Advertisement

Biochemical Indicators of Environmental Pollution

  • Gerald Goldstein
Conference paper
Part of the Environmental Science Research book series (ESRH, volume 1)

Abstract

The practical use of biological indicators to monitor environmental quality has a long history dating back to the miner’s canary; to the recognition4 about 100 years ago of the effect of sulfur dioxide on the vegetation surrounding smelters; and to the observation,19 around the turn of the century, of the effect of pollutants on the population of flora and fauna living in natural waters. Since that time, our knowledge of the biological effects of the various environmental pollutants has increased enormously, and monitoring schemes employing biological indicator organisms have been proposed and are in fact in daily use.1 There are certain intrinsic advantages in biological indicators as compared to chemical analysis for individual compounds. Biological indicators are screening agents in that they respond to many different compounds, and they are integrating devices in that they show the cumulative effects over a period of time or over some spatial area; but their primary advantage is that the bio-indicator directly measures the property that we are really interested in — is there something in the air or water that is harmful to life?

Keywords

Cholinesterase Inhibition Biological Indicator Cholinesterase Activity Biochemical Indicator Organophosphorous Pesticide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Standard Methods for the Examination of Water and Wastewater, 13th Ed., American Public Health Association, Inc., New York, 1971.Google Scholar
  2. 2.
    Buckley, R. D., and O. J. Balchum, Acute and Chronic Exposures to Nitrogen Dioxide, Arch. Environ. Health 10: 220 (1965).Google Scholar
  3. 3.
    Coppage, D. L. Characterization of Fish Brain Acetylcholinesterase with an Automated pH Stat for Inhibition Studies, Bull. Environ. Contam. Toxicol. 6: 304 (1971).CrossRefGoogle Scholar
  4. 4.
    Davenport, S. J., and G. G. Morgis. Air Pollution, A Bibliography, Bureau of Mines, Bulletin 537, 1954.Google Scholar
  5. 5.
    Davis, T. J., and G. W. Malaney. Acetylcholinesterase Inhibition —A New Parameter of Water Pollution, Water Sewage Works 114: 272 (1967).Google Scholar
  6. 6.
    Eisler, R., and P. H. Edmunds, Effects of Endrin on Blood and Tissue Chemistry of a Marine Fish, Trans. Amer. Fish. Soc. 95: 153 (1966).CrossRefGoogle Scholar
  7. 7.
    Gabliks, J. Responses of Cell Cultures to Insecticides. II. Chronic Toxicity and Induced Resistance, Proc. Soc. Exp. Biol Med. 120: 168 (1965).Google Scholar
  8. 8.
    Gabliks, J., M. Bantug-Jurilla, and L. Friedman, Responses of Cell Cultures to Insecticides. IV. Relative Toxicity of Several Organophosphates in Mouse Cell Cultures, Proc. Soc. Exp. Biol. Med. 125: 1002 (1967).Google Scholar
  9. 9.
    Gabliks, J., and L. Friedman, Responses of Cell Cultures to Insecticides. I. Acute Toxicity to Human Cells, Proc. Soc. Exp. Biol. Med. 120: 163 (1965).Google Scholar
  10. 10.
    Gabliks, J., and L. Friedman, Effects of Insecticides on Mammalian Cells and Virus Infections, Ann. N. Y. Acad. Sci. 160: 254 (1969).CrossRefGoogle Scholar
  11. 11.
    Gage, J. C. Residue Determination by Cholinesterase Inhibition Analysis, in Advances in Pest Control Research, Vol. IV, R. L. Metcalf (ed.), Interscience Publishers Inc., New York, 1961, p. 183.Google Scholar
  12. 12.
    Gage, J. C. The Significance of Blood Cholinesterase Activity Measurements, Residue Rev. 18: 159 (1967).Google Scholar
  13. 13.
    Guilbault, G. G., P. Brignac, Jr., and M. Zimmer. Homovanillic Acid as a Fluorometric Substrate for Oxidative Enzymes. Analytical Applications of the Peroxidase, Glucose Oxidase, and Xanthine Oxidase Systems, Anal Chem. 40: 190 (1968).CrossRefGoogle Scholar
  14. 14.
    Guilbault, G. G., D. N. Kramer, and E. Hackley. Fluorometric Determination of Hyaluronidase and of Cu(II), Fe(II), and Cyanide Ion Inhibitors, Anal. Biochem. 18: 241 (1967).CrossRefGoogle Scholar
  15. 15.
    Guilbault, G. G., M. H. Sadar, and M. Zimmer. Analytical Applications of The Phosphatase Enzyme System. Determination of Bismuth, Beryllium and Pesticides, Anal Chim. Acta 44: 361 (1969).CrossRefGoogle Scholar
  16. 16.
    Hernberg, S., and J. Nikkanen, Enzyme Inhibition by Lead Under Normal Urban Conditons, Lancet 1970: 63.Google Scholar
  17. 17.
    Holland, H. T., D. L. Coppage, and P. A. Butler, Use of Fish Brain Acetylcholinesterase to Monitor Pollution by Organophosphorous Pesticides, Bull Eviron. Contam. Toxicol. 2: 156 (1967).CrossRefGoogle Scholar
  18. 18.
    Jackim, E., J. M. Hamlin, and S. Sonis. Effects of Metal Poisoning on Five Liver Enzymes in the Killifish (Fundulus heteroclitus), J. Fish. Res. Bd. Canada 27: 383 (1970).CrossRefGoogle Scholar
  19. 19.
    Kolkwitz, R., and M. Marrson. Ecology of Plant Saprobia, p-47 in Biology of Water Pollution, L. E. Keup, W. M. Ingram, and K. M. Mackenthun (eds.), Federal Water Pollution Control Administration, 1967; R. Kolkwitz and M. Marsson, Ecology of Animal Saprobia, p. 85, ibid. Google Scholar
  20. 20.
    Li, M. F., and C. Jordan, Use of Spinner Culture Cells to Detect Water Pollution, J. Fish. Res. Bd. Canada 26: 1378 (1969).CrossRefGoogle Scholar
  21. 21.
    Linde, H. W. Estimation of Small Amounts of Fluoride in Body Fluids, Anal Chem, 31: 2092 (1959).CrossRefGoogle Scholar
  22. 22.
    Litterst, C. L., E. P. Lichtenstein, and K. Kajiwara, Effects of Insecticides on Growth of HeLa Cells, J. Agr. Food Chem. 17: 1199 (1969).CrossRefGoogle Scholar
  23. 23.
    McGaughey, C., and E. C. Stowell. Estimation of a Few Nanograms of Fluoride in Presence of Phosphate by Use of Liver Esterase, Anal. Chem. 36: 2344 (1964).CrossRefGoogle Scholar
  24. 24.
    McGaughey, C., and E. C. Stowell. The Estimation of Nanogram Levels of Fluoride in Fractions of Milligrams of Tooth Enamel by Means of Liver Esterase, J. Dental Res. 45: 76 (1966).CrossRefGoogle Scholar
  25. 25.
    Menzel, D. B. Oxidation of Biologically Active Reducing Substances by Ozone, Arch. Environ. Health 23: 149 (1971).Google Scholar
  26. 26.
    Mudd, J. B. Enzyme Inactivation by Peroxyacetyl Nitrate, Arch. Biochem. Biophys. 102: 59 (1963).CrossRefGoogle Scholar
  27. 27.
    Nicholson, H. P. Pesticide Pollution Control, Science 158: 871 (1967).CrossRefGoogle Scholar
  28. 28.
    Ordin, L. Effect of Peroxyacetyl Nitrate on Growth and Cell Wall Metabolism of Avena Coleoptile Sections, Plant Physiol. 37: 603 (1962).CrossRefGoogle Scholar
  29. 29.
    Ordin, L., and A. Altman. Inhibition of Phosphoglucomutase Activity in Oat Coleoptiles by Air Pollutants, Physiol. Plant. 18: 790 (1965).CrossRefGoogle Scholar
  30. 30.
    Ordin, L., M. A. Hall, and M. Katz. Peroxyacetyl Nitrate — Induced Inhibition of Cell Wall Metabolism, J. Air Pollut. Contr. Ass. 17: 811 (1967).CrossRefGoogle Scholar
  31. 31.
    Ordin, L., and B. P. Skoe. Inhibition of Metabolism in Avena Coleoptile Tissue by Fluoride, Plant Physiol 38: 416 (1963).CrossRefGoogle Scholar
  32. 32.
    Ordin, L., and B. P. Skoe. Ozone Effects on Cell Wall Metabolism of Avena Coleoptile Sections, Plant Physiol 39: 751 (1964).CrossRefGoogle Scholar
  33. 33.
    Pace, D. M., P. A. Landolt, and B. I. Aftonomos, Effects of Ozone on Cells in Vitro, Arch. Environ. Health 18: 165 (1969).Google Scholar
  34. 34.
    Pace, D. M., J. R. Thompson, B. T. Aftonomos, and H.G.O. Hoick, The Effects of NO2 and Salts of NO2 Upon Established Cell Lines, Can. J. Biochem. Physiol 39: 1247 (1961).CrossRefGoogle Scholar
  35. 35.
    P’an, A. Y. S., and Z. Jegier. The Effect of Sulfur Dioxide and Ozone on Acetylcholinesterase, Arch. Environ. Health 21: 498 (1970).Google Scholar
  36. 36.
    Rachlin, J. W., and A. Perlmutter. Fish Cells in Culture for Study of Aquatic Toxicants, Water Res. 2: 409 (1968).CrossRefGoogle Scholar
  37. 37.
    Reichardt, W. Catalytic Mobilization of Phosphate in Lake Water by Cyanophyta, Hydrobiol. 38: 377(1971).Google Scholar
  38. 38.
    Reichardt, W., J. Overbeck, and L. Steubing. Free Dissolved Enzymes in Lake Waters, Nature (London) 216: 1345 (1967).CrossRefGoogle Scholar
  39. 39.
    Rounds, D. E., and R. F. Bils, Effects of Air Pollutants on Cells in Culture, Arch. Environ. Health 10: 251 (1965).Google Scholar
  40. 40.
    Schneider, L. K., and C. A. Calkins, Sulfur Dioxide-Induced Lymphocyte Defects in Human Peripheral Blood Cultures, Environ. Res. 3: 473 (1970).CrossRefGoogle Scholar
  41. 41.
    Sridhar, M. K. C., and S. C. Pillai. Catalase Activity in Polluted Waters, Effl. Water Treat. J. 9: 81 (1969).Google Scholar
  42. 42.
    Thompson, J. R., and D. M. Pace, The Effects of Sulfur Dioxide Upon Established Cell Lines Cultivated In Vitro, Can J. Biochem. Physiol. 40: 207 (1962).CrossRefGoogle Scholar
  43. 43.
    Tinsley, I. J. DDT Ingestion and Liver Glucose-6-Phosphate Dehydrogenase Activity, Biochem. Pharmacol. 14: 847 (1965).CrossRefGoogle Scholar
  44. 44.
    Toren, E. C., Jr., and F. J. Burger. Trace Determination of Metal Ion Inhibitors of the Urea-Urease System by a pH-stat Kinetic Method, Mikrochim. Acta 1968: 1049.Google Scholar
  45. 45.
    Townshend, A., and A. Vaughan. Applications of Enzyme-Catalysed Reactions in Trace Analysis — VI. Determination of Mercury and Silver by Their Inhibition of Yeast Alcohol Dehydrogenase, Talanta 17: 299 (1970).CrossRefGoogle Scholar
  46. 46.
    Weiss, C.M. The Determination of Cholinesterase in the Brain Tissue of Three Species of Fresh Water Fish and Its Inactivation in Vivo, Ecology 39: 194(1958).Google Scholar
  47. 47.
    Weiss, C. M. Physiological Effect of Organic Phosphorus Insecticides on Several Species of Fish, Trans. Amer. Fish. Soc. 90: 143 (1961).CrossRefGoogle Scholar
  48. 48.
    Weiss, C. M. Use of Fish to Detect Organic Insecticides in Water, J. Water Pollut. Contr. Fed. 37: 647 (1965).Google Scholar
  49. 49.
    Weiss, C. M., and J. H. Gakstatter. Detection of Pesticides in Water by Biochemical Assay, J. Water Pollut. Contr. Fed. 36: 240 (1964).Google Scholar
  50. 50.
    Williams, A. K., and C. R. Sova, Acetylcholinesterase Levels in Brains of Fishes from Polluted Waters, Bull Environ. Contam. Toxicol. 1: 198 (1966).CrossRefGoogle Scholar
  51. 51.
    Zweig, G., and J. M. Devine. Determination of Organophosphorous Pesticides in Water, Residue Rev. 26: 17 (1969).Google Scholar

Bibliography Tissues and Organs Animal Tissues

  1. Abou-Donia, M. B., and D. B. Menzel. Fish-Brain Cholinesterase: Its Inhibition by Carbamates and Automatic Assay, Comp. Biochem. Physiol. 21: 99 (1967).CrossRefGoogle Scholar
  2. Buckley, R. D., and O. J. Balchum. Enzyme Alterations Following Nitrogen Dioxide Exposure, Arch. Environ. Health 14: 687 (1967).Google Scholar
  3. Casterline, J. L., Jr., and C. H. Williams. Effect of Pesticide Administration Upon Esterase Activities in Serum and Tissues of Rats Fed Variable Casein Diets, Toxicol. Appl. Pharmacol. 14: 266 (1969).CrossRefGoogle Scholar
  4. Cross, C. E., A. B. Ibrahim, M. Ahmed, and M. G. Mustafa. Effect of Cadmium Ion on Respiration and ATPase Activity of the Pulmonary Alveolar Macrophage: A Model for the Study of Environmental Interference with Pulmonary Cell Function, Environ. Res. 3: 512 (1970).CrossRefGoogle Scholar
  5. Gibson, J. R., J. L. Ludke, and D. E. Ferguson. Sources of Error in the Use of Fish-Brain Acetylcholinesterase Activity as a Monitor for Pollution, Bull. Environ. Contam. Toxicol. 4: 17 (1969).CrossRefGoogle Scholar
  6. Hogan, J. W. Water Temperature as a Source of Variation in Specific Activity of Brain Acetylcholinesterase of Bluegills, Bull. Environ. Contam. Toxicol. 5: 347 (1970).CrossRefGoogle Scholar
  7. Hogan, J. W., and C. O. Knowles. Some Enzymatic Properties of Brain Acetylcholinesterase from Bluegill and Channel Catfish, J. Fish. Res. Bd. Canada 25:615 (1968).CrossRefGoogle Scholar
  8. Ramazzotto, L. J., and L. J. Rappaport. The Effect on Nitrogen Dioxide on Aldolase Enzyme, Arch. Environ. Health 22: 379 (1971).Google Scholar
  9. Tinsley, I. J. Ingestion of DDT and Liver Glucose-6-Phosphate Dehydrogenase Activity, Nature (London) 202: 1113 (1964).CrossRefGoogle Scholar
  10. Weber, C. W., and B. L. Reid. Effect of Dietary Cadmium on Mice, Toxicol. Appl. Pharmacol. 14: 420 (1969).CrossRefGoogle Scholar
  11. Williams, C. H. β-Glucuronidase Activity in the Serum and Liver of Rats Administered Pesticides and Hepatotoxic Agents, Toxicol. Appl. Pharmacol. 14: 283 (1969).CrossRefGoogle Scholar

Blood

  1. de Bruin, A. Certain Biological Effects of Lead Upon the Animal Organism, Arch. Environ. Health 23: 249 (1971).Google Scholar
  2. Casterline, J. L., Jr., and C. H. Williams. The Detection of Cholinesterase Inhibition in Erythrocytes of Rats Fed Low Levels of the Carbamate Banol, J. Lab. Clin. Med. 69: 325 (1967).Google Scholar
  3. Goldstein, B. D., and O. J. Balchum. Effect of Ozone on Lipid Peroxidation in the Red Blood Cell, Proc. Soc. Exp. Biol Med. 126: 356 (1967).Google Scholar
  4. Goldstein, B. D., B. Pearson, C. Lodi, R. D. Buckley, and O. J. Balchum. The Effect of Ozone on Mouse Blood in Vivo, Arch. Environ. Health 16: 648 (1968).Google Scholar
  5. Haeger-Aronsen, B., M. Abdulla, and B. I. Fristedt. Effect of Lead on δ-Aminolevulinic Acid Dehydrase Activity in Red Blood Cells, Arch. Environ. Health 23: 440 (1971).Google Scholar
  6. Hernberg, S., J. Nikkanen, G. Mellin, and H. Lilius. δ-Aminolevulinic Acid Dehydrase as a Measure of Lead Exposure, Arch. Environ. Health 21: 140 (1970).Google Scholar
  7. Hogan, J. W. Some Enzymatic Properties of Plasma Esterases from Channel Catfish (Ictalurus punctatus), J. Fish. Res. Bd. Canada 28: 613 (1971).CrossRefGoogle Scholar
  8. Lane, C. E., and E. D. Scura. Effects of Dieldrin on Glutamic Oxaloacetic Transaminase in Poecilia latipinna, J. Fish. Res. Bd. Canada 27: 1869 (1970).CrossRefGoogle Scholar

Cell Culture

  1. Baker, F. D., and C. F. Tumasonis. Modified Roller Drum Apparatus for Analysing Effects of Pollutant Gases on Tissue Culture Systems, Atmos. Environ. 5: 891 (1971).CrossRefGoogle Scholar
  2. Johnson, W. J., and S. A. Weiss. Cytotoxicity of Dichlorodiphenylacetic Acid (DDA) Upon Cultured KB and HeLa Cells, and its Reversal by Mevalonic Acid, Proc. Soc. Exp. Biol Med. 124: 1005 (1967).Google Scholar
  3. Rachlin, J. W., and A. Perlmutter. Response of Rainbow Trout Cells in Culture to Selected Concentrations of Zinc Sulfate, Prog. Fish-Cult. 31: 94 (1969).CrossRefGoogle Scholar
  4. Rounds, D. E. Environmental Influences on Living Cells, Arch. Environ. Health 12: 78 (1966).Google Scholar
  5. Rounds, D. E., A. Awa, and C. M. Pomerat. Effect of Automobile Exhaust on Cell Growth in Vitro, Arch. Environ. Health 5: 49 (1962).Google Scholar
  6. Sachsenmaier, W., W. Siebs, and T. Tan. Wirkung von Ozon auf Mäuseascites-tummerzellen und auf Hühnerfibroblasten in der Gewebekultur, Z. Krebsforsch. 67: 113 (1965).CrossRefGoogle Scholar
  7. Wilson, B. W., and N. E. Walker. Toxicity of Malathion and Mercaptosuccinate to Growth of Chick Embryo Cells in vitro, Proc. Soc. Exp. Biol. Med. 121: 1260 (1966).Google Scholar

Cell-Free Preparations Indicators for Pesticides, A. Cholinesterase

  1. Archer, T. E., W. L. Winterlin, G. Zweig, and H. F. Beckman. Residue Analysis of Ethion by Cholinesterase Inhibition after Oxidation, J. Agr. Food Chem. 11:471 (1963).CrossRefGoogle Scholar
  2. Archer, T. E., and G. Zweig. Direct Colorimetric Analysis of Cholinesterase-Inhibiting Insecticides With Indophenyl Acetate, J. Agr. Food Chem. 7: 178 (1959).CrossRefGoogle Scholar
  3. Baum, G., and F. B. Ward. Ion-Selective Electrode Procedure for Organophosphate Pesticide Analysis, Anal. Chem. 43: 947 (1971).CrossRefGoogle Scholar
  4. Beynon, K. I., L. Davies, K. Elgar, and G. Stoydin. Analysis of Crops and Soils for Residues of Diethyl 1-(2,4-Dichlorophenyl)-2-Chlorovinyl Phosphate. I. Development of Method, J. Sci. Food Agric. 17: 162 (1966).CrossRefGoogle Scholar
  5. Beynon, K. I., and G. Stoydin. Application of an Agar-Agar Diffusion Procedure to Pesticide Residue Analysis and to the Cholinesterase Screening of Candidate Pesticides, Nature (London) 208: 748 (1965).CrossRefGoogle Scholar
  6. Bluman, N. Phosdrin Residues in Fruits and Vegetables, J. Ass. Offlc. Anal. Chem. 47:272 (1964).Google Scholar
  7. Boyd, G. R. Determination of Residues of o-2,4-Dichlorophenyl o,o-Diethyl Phosphorothioate (V-C 13 Nemacide) by Cholinesterase Inhibition, J. Agr. Food Chem. 7: 615 (1959).CrossRefGoogle Scholar
  8. Bunyan, P. J. The Detection of Organo-phosphorous Pesticides on Thin-Layer Chiomatograms, Analyst 89: 615 (1964).CrossRefGoogle Scholar
  9. Cook, J. W. Paper Chromatography of Some Organic Phosphate Insecticides. IV. Spot Test for In Vitro Cholinesterase Inhibitors, J. Ass. Offlc. Anal. Chem. 38: 150 (1955).Google Scholar
  10. Cook, J. W. Paper Chromatography of Some Organic Phosphate Insecticides. V. Conversion of Organic Phosphates to In Vitro Cholinesterase Inhibitors by N-Bromosuccinimide and Ultraviolet Light, J. Ass. Offic. Anal. Chem. 38:826 (1955).Google Scholar
  11. Crosby, D. G., E. Leitis, and W. L. Winterlin. Photo decomposition of Carbamate Insecticides, J. Agr. Food Chem. 13: 204 (1965).CrossRefGoogle Scholar
  12. Crossley, J. GLC and TLC Determination of Tetraethyl Pyrophosphate (TEPP) in Crops, J. Ass. Offic. Anal. Chem. 53: 1036 (1970).Google Scholar
  13. Ebing, W. Über die Sprühreagens zum Dünnschichtchromatographischen Nachweis Cholinesterase hemmender Insektizide, J. Chromatogr. 42: 140 (1969).CrossRefGoogle Scholar
  14. El-Refai, A., and T. L. Hopkins. Thin-Layer Chromatography and Cholinesterase Detection of Several Phosphorothiono Insecticides and Their Oxygen Analogs, J. Agr. Food Chem. 13: 477 (1965).CrossRefGoogle Scholar
  15. Fallscheer, H. O., and J. W. Cook. Studies on the Conversion of Some Thionophosphates and a Dithiophosphate to In Vitro Cholinesterase Inhibitors, J. Ass. Offic. Anal. Chem. 39: 691 (1956).Google Scholar
  16. Getz, M. E., and S. J. Friedman. Organophosphate Pesticide Residues: A Spot Test for Detecting Cholinesterase Inhibitors, J. Ass. Offic. Anal. Chem. 46: 707 (1963).Google Scholar
  17. Giang, P. A., and S. A. Hall. Enzymatic Determination of Organic Phosphorous Insecticides, Anal. Chem. 23: 1830 (1951).CrossRefGoogle Scholar
  18. Guilbault, G. G., D. N. Kramer, and P. L. Cannon, Jr. Electrochemical Determination of Organophosphorous Compounds, Anal. Chem. 34: 1437 (1962).CrossRefGoogle Scholar
  19. Guilbault, G. G., S. S. Kuan, and M. H. Sadar. Purification and Properties of Cholinesterase s from Honeybees — Apis mellifera Linnaeus — and Boll Weevils — Anthonomus grandis Boheman, J. Agr. Food Chem. 18: 692 (1970).CrossRefGoogle Scholar
  20. Guilbault, G. G., M. H. Sadar, S. Kuan, and D. Casey. Effect of Pesticides on Liver Cholinesterase s from Rabbit, Pigeon, Chicken, Sheep, and Pig, Anal. Chim. Acta 51: 83 (1970).CrossRefGoogle Scholar
  21. Guilbault, G. G., M. H. Sadar, S. S. Kuan, and D. Casey. Enzymatic Methods of Analysis. Trace Analysis of Various Pesticides With Insect Cholinesterase, Anal. Chim. Acta 52: 75 (1970).CrossRefGoogle Scholar
  22. Gunther, F. A., and D. E. Ott. Automated Pesticide Residue Analysis and Screening, Residue Rev. 14: 12 (1966).Google Scholar
  23. Kramer, D. N., and R. M. Gamson. Analysis of Toxic Phosphorous Compounds, Anal Chem. 29(12): 21A (1957).CrossRefGoogle Scholar
  24. Lau, S. C. Separation and Measurement of 3-Hydroxy-N,N-dimethyl-cis-crotonamide Dimethyl Phosphate (Bidrin Insecticide) and 3-Hydroxy-N-methyl-cis-crotonamide Dimethyl Phosphate (Azodrin Insecticide) in Crops by Selective Cleanup (Partition) Procedures, J. Agr. Food Chem. 14: 145 (1966).CrossRefGoogle Scholar
  25. Leegwater, D. C., and H. W. Van Gend. Automated Differential Screening Method for Organophosphorous Pesticides, J. Sci. Food Agric. 19: 513 (1968).CrossRefGoogle Scholar
  26. Matoušek, J., J. Fischer, and J. German. Nová Fluorimetrická Metoda Stanovení Submikrogramových Kvant Inhibitoru Cholinesterázy, Chem. Zvesti 22: 184 (1968).Google Scholar
  27. Mattson, A. M., R. A. Kahrs, and R. T. Murphy. Routine Quantitative Residue Determinations of S-[(2-Methoxy—5-oxo-Δ2–1,3,4-thiadiazolin-4-yl) methyl] O,O-dimethyl phosphorodithioate (Supracide) and its Oxygen Analogin Forage Crops, J. Agr. Food Chem. 17: 565 (1969).CrossRefGoogle Scholar
  28. McCaulley, J., and J. W. Cook. The In Vitro Anticholinesterase Effect of Oxidized Parathion, Methyl Parathion, and Malathion on Eight Different Sources of Cholinesterase, J. Ass. Offic. Anal Chem. 42: 197 (1969).Google Scholar
  29. Menn, J. J., and J. B. McBain. Detection of Cholinesterase-Inhibiting Insecticide Chemicals and Pharmaceutical Alkaloids on Thin-Layer Chromatograms, Nature (London) 209: 1351 (1966).CrossRefGoogle Scholar
  30. Miskus, R., M. E. Tzanakakis, and S. M. Smith. Determination of Bayer 19639 Residues in Agricultural Crops by Cholinesterase Inhibition, J. Econ. Entomol 52: 76 (1959).Google Scholar
  31. Moorefield, H. EL, and E. R. Tefft. Application of Cholinesterase Assay to Residue Analysis of 1-Naphthyl N-methylcarbamate (Sevin), Contrib. Boyce Thompson Inst. 19: 295 (1958).Google Scholar
  32. Nesheim, E. D., and J. W. Cook. Cholinesterase Inhibition Method of Analysis for Organic Phosphate Pesticides: Effect of Enzyme-Inhibitor Reaction Time Upon Inhibition, J. Ass. Offic. Anal. Chem. 42: 187 (1959).Google Scholar
  33. Ortloff, R., and P. Franz. Zwei Neue Methoden der Biochemischen Lokalisierung von Phosphorohaltigen Insektiziden auf Dünnschichtchromatogrammen, Z. Chem. 5: 388 (1965).Google Scholar
  34. Ott, D. E. Dual Simultaneous Auto Analyzer for Screening Some Insecticide Residues, J. Agr. Food Chem. 16: 874 (1968).CrossRefGoogle Scholar
  35. Ott, D. E., and F. A. Gunther. Rapid Screening for Some Anticholinesterase Insecticide Residues by Automated Analysis, J. Ass. Offic. Anal. Chem. 49: 662 (1966).Google Scholar
  36. Ott, D. E., and F. A. Gunther. Automated Elution-Filtration Analysis of Anticholinesterase Organophosphorous Compounds on Thin Layer Chromatographic Scrapings, J. Ass. Offic. Anal. Chem. 49: 669 (1966).Google Scholar
  37. Ott, D. E., and F. A. Gunther. Procedure for the Analysis of Technical-Grade Parathion in Waterplants by an Anticholinesterase (AutoAnalyzer) Method, J. Econ. Entomol. 59: 227 (1966).Google Scholar
  38. Patchett, G. G., and G. H. Batchelder. Determination of Trithion Crop Residues by Cholinesterase Inhibition Measurement, J. Agr. Food Chem. 8: 54 (1960).CrossRefGoogle Scholar
  39. Rosenthal, N. R. Two Modifications of the Colorimetric Procedure for Determination of Serum Cholinesterase. Application to Trithion and Phosdrin, J. Ass. Offic. Anal Chem. 43: 737 (1960).Google Scholar
  40. Sadar, M. H., S. S. Kuan, and G. G. Guilbault. Trace Analysis of Pesticides Using Cholinesterase from Human Serum, Rat Liver, Electric Eel, Bean Leaf Beetle, and White Fringe Beetle, Anal. Chem. 42: 1770 (1970).CrossRefGoogle Scholar
  41. Sándi, E., and J. Wight. An Agar-Diffusion Method for the Estimation of Organic Phosphate Insecticides, Chem. Ind. (London), 1961: 1161.Google Scholar
  42. Schutzmann, R. L. Note on Improved Spray Reagents for TLC Fluorogenic Detection of Cholinesterase Inhibitors, J. Ass. Offic. Anal Chem. 53: 1056 (1970).Google Scholar
  43. Schutzmann, R. L., and W. F. Barthel. Indoxyl Acetate Spray Reagent for Fluorogenic Detection of Cholinesterase Inhibitors in Environmental Samples, J. Ass. O f fie. Anal Chem. 52: 151 (1969).Google Scholar
  44. Voss, G. Automated Determination of Activity and Inhibition of Cholinesterase With Acetylthiocholine and Dithiobisnitrobenzoic Acid, J. Econ. Entomol. 59: 1288 (1966).Google Scholar
  45. Voss, G. Peacock Plasma, A Useful Cholinesterase Source for Inhibition Residue Analysis of Insecticidal Carbamates, Bull. Environ. Contain. Toxicol 3: 339 (1968).CrossRefGoogle Scholar
  46. Voss, G. The Fundamental Kinetics of Cholinesterase Reaction With Substrates and Inhibitors in an Automated, Continuous Flow System, Residue Rev. 23: 71 (1968).Google Scholar
  47. Voss, G. Cholinesterase Inhibition Autoanalysis of Insecticidal Organophosphates and Carbamates, J. Ass. Offic. Anal Chem. 52: 1027 (1969).Google Scholar
  48. Winter, G. D. Automated Enzymatic Assay of Organic Phosphate Pesticide Residues, Ann. N. Y. Acad. Sci. 87: 875 (1960).CrossRefGoogle Scholar
  49. Winter, G. D., and A. Ferrari. Automatic Wet Chemical Analysis as Applied to Pesticide Residues, Residue Rev. 5: 139 (1964).Google Scholar
  50. Winterlin, W., G. Walker, and H. Frank. Detection of Cholinesterase-Inhibiting Pesticides Following Separation on Thin-Layer Chromatograms, J. Agr. Food Chem. 16: 808 (1968).CrossRefGoogle Scholar
  51. Yip, G., and J. W. Cook. A Comparison of Four Cholinesterase Methods of Analysis for Organic Phosphate Pesticides, J. Ass. Offic. Anal. Chem. 42: 194(1959).Google Scholar
  52. Zweig, G., and T. E. Archer. Residue Determination of Sevin (1-Naphthyl N-Methylcarbamate) in Wine by Cholinesterase Inhibition and Paper Chromatography, J. Agr. Food Chem. 6: 910 (1958).CrossRefGoogle Scholar

B. Other Esterases

  1. Ackermann, H. Dünnschichtchromatographisch-Enzymatischer Nachweis Phosphorganischer Insektizide. Aktivierung Schwacher Esterasehemmer, J. Chromatogr. 36: 309 (1968).Google Scholar
  2. Geike, F. Dünnschichtchromatographisch-Enzymatischer Nachweis und zum Wirkungsmechanismus von Chlorkohlenwasserstoff-Insektiziden, J. Chromatogr. 44: 95 (1969).CrossRefGoogle Scholar
  3. Geike, F. Dünnschichtchromatographisch-Enzymatischer Nachweis und zum Wirkungsmechanismus von Chlorkohlenwasserstoff-Insektiziden. II. Nachweis durch Hemmung von Trypsin, J. Chromatogr. 52: 447 (1970).CrossRefGoogle Scholar
  4. Geike, F. Dünnschichtchromatographisch-Enzymatischer Nachweis von Carbamaten. I. Nachweis Insektiziden Carbamate mit Rinderleber-Esterase, J. Chromatogr. 53: 269 (1970).CrossRefGoogle Scholar
  5. Geike, F. Dünnschichtchromatographisch-Enzymatischer und Gaschromatographischer Nachweis von 4,4′-Dichlorbenzophenon und Scinen Abbauprodukten, J. Chromatogr. 54: 282 (1971).CrossRefGoogle Scholar
  6. Guilbault, G. G., and D. N. Kramer. Fluorometric Determination of Lipase, Acylase, Alpha- and Gamma-Chymotrypsin and Inhibitors of these Enzymes, Anal. Chem. 36: 409 (1964).CrossRefGoogle Scholar
  7. Guilbault, G. G., and M. H. Sadar. Fluorometric Determination of Pesticides, Anal. Chem. 41: 366 (1969).CrossRefGoogle Scholar
  8. Matsumura, F., T. A. Bratkowski, and K. C. Patil. DDT: Inhibition of an ATP-ase in the Rat Brain, Bull. Environ. Contam. Toxicol. 4: 262 (1969).CrossRefGoogle Scholar
  9. McKinley, W. P., and P. S. Johal. Esterase Inhibition Technique for Detection of Organophosphorous Pesticides. II Simplified Version for Routine Checking, J. Ass. Offic. Anal. Chem. 46: 840 (1963).Google Scholar
  10. McKinley, W. P., and S. I. Read. Esterase Inhibition Technique for the Detection of Organophosphate Pesticides, J. Ass. Offic. Anal. Chem. 45: 467 (1962).Google Scholar
  11. Mendoza, C. E., D. L. Grant, B. Braceland, and K. A. McCully. Evaluation of Esterases from Livers of Beef, Pig, Sheep, Monkey, and Chicken for Detection of Some Pesticides by Thin-Layer Chromatographic-Enzyme Inhibition Technique, Analyst 94: 805 (1969).CrossRefGoogle Scholar
  12. Mendoza, C. E., and J. B. Shields. Sensitivity of Pig Liver Esterase in Detecting Twelve Carbamate Pesticides on Thin-Layer Chromatograms, J. Chromatogr. 50: 92 (1970).CrossRefGoogle Scholar
  13. Mendoza, C. E., and J. B. Shields. Esterase Specificity and Sensitivity to Organophosphorous and Carbamate Pesticides: Factors Affecting Determination by Thin-Layer Chromatography, J. Ass. Offic. Anal. Chem. 54: 507 (1971).Google Scholar
  14. Mendoza, C.E., and P. J. Wales. Liver Esterases of Rhesus Monkey: Inhibition and Activation by Selected Pesticides, J. Agr. Food Chem. 18: 503 (1970).CrossRefGoogle Scholar
  15. Mendoza, C. E., P. J. Wales, H. A. McLeod, and W. P. McKinley. Enzymatic Detection of Ten Organophosphorous Pesticides and Carbaryl on Thin-Layer Chromatograms: An Evaluation of Indoxyl, Substituted Indoxyl and 1-Naphthyl Acetates as Substrates of Esterases, Analyst 93: 34 (1968).CrossRefGoogle Scholar
  16. Mendoza, C. E., P. J. Wales, H. A. McLeod, and W. P. McKinley. Thin-Layer Chromatographic-Enzyme Inhibition Procedure to Screen for Organophosphorous Pesticides in Plant Extracts Without Elaborate Cleanup, Analyst 93: 173 (1968).CrossRefGoogle Scholar
  17. Ooms, A. J. J., and J. C. A. E. Breebaart-Hansen. The Reaction of Organophosphorous Compounds With Hydrolytic Enzymes. The Inhibition of Horse Liver Aliesterase, Biochem. Pharmacol. 14: 1727 (1965).Google Scholar
  18. Ooms, A. J. J., J. C. A. E. Breebaart-Hansen, and B. I. Ceulen. The Reaction of Organophosphorous Compounds With Hydrolytic Enzymes. II. The Inhibition of Citrus Acetylesterase, Biochem. Pharmacol. 15: 17 (1966).CrossRefGoogle Scholar
  19. Ooms, A. J. J., and C. van Dijk. The Reaction of Organophosphorous Compounds With Hydrolytic Enzymes. III. The Inhibition of Chymotrypsin and Trypsin, Biochem. Pharmacol. 15: 1361 (1966).CrossRefGoogle Scholar
  20. Villeneuve, D. C., A. G. Butterfield, and K. A. McCully. A Carboxylesterase Inhibition Assay to Estimate Parathion, Malathion, and Diazinon in Lettuce Extracts, Bull. Environ. Contam. Toxicol. 4: 232 (1969).Google Scholar
  21. Villeneuve, D. C, and W. P. McKinley. Inhibition of Beef Liver Hydrolytic Enzymes by Organophosphorous Pesticides, J. Agr. Food Chem. 16: 290 (1968).CrossRefGoogle Scholar
  22. Villeneuve, D. C, G. Mulkins, K. A. McCully, and W. P. McKinley. The Inhibition of Beef Liver Hydrolytic Enzymes by Organophosphorous Pesticides — A Comparison of the Effects of Several Pesticides and Their Oxons on the Inhibition Response, Bull Environ. Contam. Toxicol 4: 39 (1969).CrossRefGoogle Scholar
  23. Wales, P. J., H. A. McLeod, and W. P. McKinley. TLC-Enzyme Inhibition Procedure to Detect Some Carbamate Standards and Carbaryl in Food Extracts, J. Ass. Offic. Anal Chem. 51: 1239 (1968).Google Scholar
  24. Wales, P. J., C. E. Mendoza, H. A. McLeod, and W. P. McKinley. Procedure for Semiquantitative Confirmation of Some Organophosphorous Pesticide Residues in Plant Extracts, Analyst 93: 691 (1968).CrossRefGoogle Scholar

C. Other Enzymes

  1. Colvin, H. J., and A. T. Phillips. Inhibition of Electron Transport Enzymes and Cholinesterases by Endrin, Bull Environ. Contam. Toxicol, 3: 106 (1968).CrossRefGoogle Scholar
  2. Freedland, R. A., and L. Z. McFarland. The Effect of Various Pesticides on Purified Glutamate Dehydrogenase, Life Sci. 4: 1735 (1965).CrossRefGoogle Scholar
  3. Keller, H. Die Bestimmung kleinster Mengen DDT auf Enzymanalytischen Wege, Naturwissenschaften 39: 109 (1952).CrossRefGoogle Scholar
  4. Pardini, R. S. Polychlorinated Biphenyls (PCB): Effect on Mitochondrial Enzyme Systems, Bull Environ. Contam. Toxicol 6: 539 (1971).CrossRefGoogle Scholar
  5. Pardini, R. S., J. C. Heidker, and B. Payne. The Effect of Some Cyclodiene Pesticides, Benzenehexachloride and Toxaphene on Mitochondrial Electron Transport, Bull. J. Environ. Contam. Toxicol. 6: 436 (1971).CrossRefGoogle Scholar

Indicators for Cations

  1. Bamberger, C. E., J. Botbol, and R. L. Cabrini. Inhibition of Alkaline Phosphatase by Beryllium and Aluminum, Arch. Biochem. Biophys. 123: 195 (1968).CrossRefGoogle Scholar
  2. Guilbault, G. G., and D. N. Kramer. An Electrochemical Method for the Determination of Glucosidase and Mercuric Ion, Anal Biochem. 18: 313 (1967).CrossRefGoogle Scholar
  3. Guilbault, G. G., D. N. Kramer, and P. L. Cannon, Jr. Electrochemical Determination of Xanthine Oxidase and Inhibitors, Anal. Chem. 36: 606 (1964).CrossRefGoogle Scholar
  4. Hughes, R. B., S. A. Katz, and S. E. Stubbins. Inhibition of Urease by Metal Ions, Enzymolgia 36: 332 (1969).Google Scholar
  5. Kratochvil, B., S. L. Boyer, and G. P. Hicks. Effects of Metals on the Activation and Inhibition of Isocitric Dehydrogenase. Application to Trace Metal Analysis, Anal. Chem. 39: 45 (1967).CrossRefGoogle Scholar
  6. Mealor, D., and A. Townshend. Applications of Enzyme-Catalyzed Reactions in Trace Analysis. I. Determination of Mercury and Silver by Their Inhibition of Invertase, Talanta 15: 747 (1968).CrossRefGoogle Scholar
  7. Mealor, D., and A. Townshend. Applications on Enzyme-Catalyzed Reactions in Trace Analysis. III. Determination of Silver and Thiourea by Their Combined Inhibition of Invertase, Talanta 15: 1371 (1968).CrossRefGoogle Scholar
  8. Shaw, W. H. R., and D. N. Raval. The Inhibition of Urease by Metal Ions at pH 8.9, J. Amer. Chem. Soc. 83: 3184 (1961).CrossRefGoogle Scholar
  9. Thomas, M., and W. N. Aldridge. The Inhibition of Enzymes by Beryllium, Biochern. J. 98: 94 (1966).Google Scholar
  10. Toren, E. C, Jr., and F. J. Burger. Trace Determination of Metal Ion Inhibitors of the Glucose-Glucose Oxidase System, Mikrochim. Acta 1968: 538.Google Scholar
  11. Townshend, A., and A. Vaughan. Determination of Traces of Barium by Reactivation of Zinc-Inhibited Alkaline Phosphatase, Anal. Lett. 1: 907 (1968).CrossRefGoogle Scholar
  12. Townshend, A., and A. Vaughan. Applications of Enzyme-Catalyzed Reactions in Trace Analysis. IV. Determination of Beryllium and Zinc by Their Inhibition of Calf-Intestinal Alkaline Phosphatase, Talanta 16: 929 (1969).CrossRefGoogle Scholar
  13. Townshend, A., and A. Vaughan. Detection of Traces of Zinc by Activation of Apoalkaline Phosphatase, Anal. Chim. Acta 49: 366 (1970).CrossRefGoogle Scholar
  14. Townshend, A., and A. Vaughan. Applications of Enzyme-Catalyzed Reactions in Trace Analysis. V. Determination of Zinc and Calcium by Their Activation of the Apo-enzyme of Calf-Intestinal Alkaline Phosphatase, Talanta 17: 289 (1970).CrossRefGoogle Scholar

Indicators for Anions

  1. Cimasoni, G. Inhibition of Cholinesterases by Fluoride in vitro, Biochem. J. 99: 133 (1966).Google Scholar
  2. Denburg, J., and W. D. McElroy. Anion Inhibition of Firefly Luciferase, Arch. Biochern. Biophys. 141: 668 (1970).CrossRefGoogle Scholar
  3. Kremer, M. L. Inhibition of Catalase by Cyanide, Isr. J. Chem. 8: 799 (1970).Google Scholar
  4. Krupka, R. M. Fluoride Inhibition of Acetylcholinesterase, Mol. Pharmacol. 2: 558 (1966).Google Scholar
  5. Mealor, D., and A. Townshend. Applications of Enzyme-Catalyzed Reactions in Trace Analysis. II. Determination of Cyanide, Sulphide, and Iodine With Invertase, Talanta 15: 1477 (1968).CrossRefGoogle Scholar
  6. Slater, E. C., and W. D. Bonner. The Effect of Fluoride on the Succinic Oxidase System, Biochern. J. 52: 185 (1952).Google Scholar
  7. Yang, S. F., and G. W. Miller. Biochemical Studies of the Effect of Fluorides on Higher Plants. 2. The Effect of Fluoride on Sucrose-Synthesizing Enzymes from Higher Plants, Biochem. J. 88: 509 (1963).Google Scholar
  8. Yurow, H. W., D. H. Rosenblatt, and J. Epstein. Detection of Monobasic Phosphorous Acid Esters by Conversion to Cholinesterase Inhibitors, Talanta 5: 199 (1960).CrossRefGoogle Scholar

Indicators f Air Pollutants

  1. Estes, F. L., and C. H. Pan. Response of Enzyme Systems to Photochemical Reaction Products, Arch. Environ. Health 10: 207 (1965).Google Scholar
  2. Mudd, J. B. Responses of Enzyme Systems to Air Pollutants, Arch. Environ. Health 10: 201 (1965).Google Scholar
  3. Ordin, L., M. J. Garber, J. I. Kindinger, S. A. Whitmore, L. C. Greve, and O. C. Taylor. Effect on Peroxyacetyl Nitrate (PAN) in vivo on Tobacco Leaf Polysaccharide Synthetic Pathway Enzymes, Environ. Sci. Technol. 5: 621 (1971).CrossRefGoogle Scholar
  4. Ordin, L., and M. A. Hall. Studies on Cellulose Synthesis by a Cell-Free Oat Coleoptile Enzyme System: Inactivation by Airborne Oxidants, Plant Physiol. 42: 205 (1967).CrossRefGoogle Scholar
  5. Ordin, L., M. A. Hall, and J. I. Kindinger. Oxidant-Induced Inhibition of Enzymes Involved in Cell Wall Polysaccharide Synthesis, Arch. Environ. Health 18: 623 (1969)Google Scholar

Copyright information

© Plenum Press, New York 1972

Authors and Affiliations

  • Gerald Goldstein
    • 1
  1. 1.Analytical Biochemistry Group, Analytical Chemistry DivisionOak Ridge National LaboratoryOak RidgeUSA

Personalised recommendations