L. Mandelkern

  • Robert D. Ulrich
Part of the Contemporary Topics in Polymer Science book series (CTPS, volume 1)


Studies of crystalline polymers predate the recognition and acceptance of polymers as molecules of very high molecular weight1. These very early works were primarily concerned with the determination of crystal structures and unit cell dimensions by the conventional methods of x-ray diffraction. These investigators were confronted with the dilemna as to whether it was necessary for the complete molecule to be located within the unit cell. The resolution of this problem was one of the major steps which lead to the adoption of the macromolecular hypothesis1. In the 1940’s there were two major advances in other aspects of this general problem. Wood and Bekkedahl2 reported the results of an experimental study of the crystallization kinetics and melting of natural rubber. Although these observations could not be interpreted until much later, they forcibly demonstrated the fact that crystalline polymers could be quantitatively studied using methods which were well known for low molecular weight crystalline substances. Flory3 presented thermodynamic theory of the fusion of polymers in 1949 which has had many major and far reaching consequences. Although not always directly recognized as such, these theoretical considerations have continued to serve as a base for much of the research in this field today.


Natural Rubber Isothermal Crystallization Crystalline Polymer Polymer Crystallization Supermolecular Structure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P. J. Flory, Principles of Polymer Chemistry, Cornell Press, 1953, p. 22.Google Scholar
  2. 2.
    L. A. Wood, N. Bekkedahol, J. Appl. Pkys., 17, 362 (1946).CrossRefGoogle Scholar
  3. 3.
    P. J. Flory, J. Ckem. Pkys., 14, 223 (1949).Google Scholar
  4. 4.
    L. Mandelkern, Chemical Reviem, 56, 903 (1956).CrossRefGoogle Scholar
  5. 5.
    L. Mandelkern, Rubber Chem. Tech., 32, 1392 (1959).CrossRefGoogle Scholar
  6. 6.
    L. Mandelkern, Crystallization of Polymers, McGraw-Hill (1964).Google Scholar
  7. 7.
    P. J. Flory, Trnas. Farad Soc., 51, 848 (1955).CrossRefGoogle Scholar
  8. 8.
    P. J. Flory, A. Vrij, J. Amer. Chem. Soc., 85., 3548 (1963).Google Scholar
  9. 9.
    R. Chiang, P. J. Flory, J. Amer. Chem. Soc., 83, 2857 (l96l).Google Scholar
  10. 10.
    L. Mandelkern, F. A. Quinn, Jr., P. J. Flory, J. Appl. Phys. 25., 830 (1954).Google Scholar
  11. 11.
    L. Mandelkern, J. Appl. Phys., 26, 443 (1955).CrossRefGoogle Scholar
  12. 12.
    C. Devoy, L. Mandelkern, L. Bourland, J. Polym. Sci., A-2, 1, 869 (1970).Google Scholar
  13. 13.
    E. Riande, J. M. G. Fatou, Polymer, 99 (1976).Google Scholar
  14. 14.
    M. Avrami, J. Chem. Phys., 7, 1103 (1939); ibid. 8., 212 (1940).Google Scholar
  15. 15.
    C. W. Bunn, T. C. Alcock, Trans. Farad. Soc., 41, 317 (1945).CrossRefGoogle Scholar
  16. 16.
    S. Go, L. Mandelkern, R. Prud’homme, R. Stein, J. Polym. Sci., Polym. Phys. Ed., 12, 1485 (1974).Google Scholar
  17. 17.
    S. Go, L. Mandelkern, D. Pfeiffer, R. Stein, in preparation.Google Scholar
  18. 18.
    J. D. Hoffman, G. T. Davis, J. I. Lauritzer, Jr. (1976), in Treatise on Solid State Chemistry, D. Hanney, ed., Plenum Press, Vol. 3.Google Scholar
  19. 19.
    R. Jaccodine, Nature, 176, 301 (1955).CrossRefGoogle Scholar
  20. 20.
    P. H. Till, J. Polymer Sci., 24 301 (1957).CrossRefGoogle Scholar
  21. 21.
    A. Keller, Phill. Mag., (8) 2, 1171 (1957).CrossRefGoogle Scholar
  22. 22.
    E. W. Fischer, Z. Naturforsch, 12a, 753 (1957).Google Scholar
  23. 23.
    K. H. Storks, J. Amer. Chem. Soc., 60, 1753 (1938).CrossRefGoogle Scholar
  24. 24.
    L. Mandelkern, (1970), in Progress in Polymer Science, A. D. Jenkin, ed., Pergamon Press, Vol. 2, p. 165.Google Scholar
  25. 25.
    A. Keller, Makromol. Chem., 34, 1 (1959).CrossRefGoogle Scholar
  26. 26.
    A. Keller, Polymer, 3, 393 (1962).CrossRefGoogle Scholar
  27. 27.
    P. H. Lindenmeyer, Science 147 9 1256 (1956).Google Scholar
  28. 28.
    J. D. Hoffman, SPE (Soc. Plast. Eng.) Tians., 49 315 (1964).Google Scholar
  29. 29.
    A. Peterlin, J. Appl. Phys., 9 31, 19354 (1960).Google Scholar
  30. 30.
    A. Peterlin, E. W. Fischer, I. Phys., 159, 272 (1960).Google Scholar
  31. 31.
    A. Peterlin, E. W. Fischer, C. Reinhold, J. Chem. Phys., 9 31, 1403 (1962).CrossRefGoogle Scholar
  32. 32.
    A. Peterlin, C. Reinhold, J. Polym. Sci., Part-A 3, 2801 (1965).Google Scholar
  33. 33.
    F. P. Price, J. Chem. Phys., 35., 1884 (1961).Google Scholar
  34. 34.
    J. I. Lauritzen, Jr. and J. D. Hoffman, J. Res. Nat. Bur. Stand., Sect. A, 64A (1960).Google Scholar
  35. 35.
    F. C. Frank, M. Tosi, Proc. Roy. Soc. Ser., A, A263, 323 (1961).CrossRefGoogle Scholar
  36. 36.
    L. Mandelkern, (1975), in Characterization of Materials in Research: Ceramics and Polymers, Proceedings of the 20th Sagamore Army Materials Research Conference, Syracyse University Press.Google Scholar
  37. 37.
    L. Mandelkern, J. Polym. Sci., C50, 457 (1975).Google Scholar
  38. 38.
    L. Mandelkern, Acct. Chem. Research, 8l (1976).Google Scholar
  39. 39.
    L. Mandelkern, Annual Rev. of Materials Sci., Vol. 6, (1976).Google Scholar
  40. 40.
    P. J. Fiory, J. Amer. Chem. Soc., 84, 2857 (1962).CrossRefGoogle Scholar
  41. 41.
    E. W. Fischer, G. Schmidt, Angew Chem., 74, 551 (1962).CrossRefGoogle Scholar
  42. 42.
    H. G. Zachmann, A. Peterlin, J. Macromol Sci.-Phys. 3 495 (1969).CrossRefGoogle Scholar
  43. 43.
    M. I. Bank, S. Krimm, J. Polym. Sci., A-2 7 1785 (1969).Google Scholar
  44. 44.
    J. G. Fatou, L. Mandelkern, J. Phys. Chem., 64, 417 (1965).CrossRefGoogle Scholar
  45. 45.
    L. Mandelkern, J. Phyb. Chem., 75 3920 (1971)Google Scholar
  46. 46.
    L. Mandelkern, Polym. Sci., Eng., 7, 232 (1967).CrossRefGoogle Scholar
  47. 47.
    L. Mandelkern, J. M. Price, M. Gopalan, J. G. Fatou, J. Polym. Sci., Part A 4, 385 (1966).CrossRefGoogle Scholar
  48. 48.
    J. M. Schultz, W. H. Robinson, G. M. Pound, J. Polym. Sci., A-2, 511 (1967).Google Scholar
  49. 49.
    J. Schelten, G. D. Wignall, D. G. H. Ballard, Polymer, 682 (1974); G. D. Wignall, private communication.Google Scholar
  50. 50.
    F. Stehling, E. Ergöz, L. Mandelkern, Macromoles. 4, 672 (1971).CrossRefGoogle Scholar
  51. 51.
    J. Schaefer, (1974), in Topics in Carbon-13 MMR Spectroscopy, G. C. Levy, ed., Wiley-Interscience, New York, Vol. 1, p. 49.Google Scholar
  52. 52.
    R. A. Komoroski, J. Maxfield, F. Sakaguchi, L. Mandelkern, submitted to Macromolecules.Google Scholar
  53. 53.
    R. A. Komoroski, J. Maxfield, L. Mandelkern, in preparation.Google Scholar
  54. 54.
    R. S. Stein (1964), in New Methods of Polymer Characterization, B. Ke, ed., Wiley-Interscience, New York.Google Scholar
  55. 55.
    E. Ergöz, J. G. Fatou, L. Mandelkern, Macromolecules, l47 (1972).Google Scholar
  56. 56.
    I. C. Sanchez, J. Macromol. Sci. -Revs. Macromol. Chem. 9 C10, 113 (1974).Google Scholar

Copyright information

© Plenum Press, New York 1978

Authors and Affiliations

  • Robert D. Ulrich
    • 1
  1. 1.Noryl Products DepartmentGeneral Electric Plastics DivisionSelkirkUSA

Personalised recommendations