Atmospheric Gases

Variations in Concentration and Some Common Pollutants
  • Casimer T. Grabowski


Pure food, pure water, and pure air are matters of interest to all of us. We can, to a large extent, control what we put into our mouths, but we can control the air we breathe, 500 cc about 15 times every minute, only by the use of elaborate artificial systems or by geographically removing ourselves from a situation which might be harmful. We are beginning to recognize the full extent of the dangers of air pollutants to adult health, but our understanding of the teratogenic potential of the commonest air pollutants is negligible. Our constant need for air and the ubiquitousness of the additives from our industrial society complicate attempts to evaluate these factors precisely. Perhaps the unsatisfactory state of knowledge in this area is at least partly due to a fatalistic dismissal with such attitudes as: “We can’t control it, we are constantly exposed to it, so it probably isn’t too bad anyhow.”


Chick Embryo Fetal Heart Rate Oxygen Deficiency Teratogenic Effect Stagnant Hypoxia 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adamsons, K., Mueller-Heuback, E., and Myers, R. E., 1971, Production of fetal asphyxia in the rhesus monkey by administration of catecholamines to the mother, Am. J. Obstet. Gynecol. 109: 248–262.Google Scholar
  2. Anon., 1971, National primary and secondary ambient air quality standards, Fed. Regist. 36: 8186–8201.Google Scholar
  3. Archer, J. E., and Blackman, D. E., 1971, Prenatal psychological stress and offspring behavior in rats and mice, Dev. Psychobiol. 4 (3): 193–248.CrossRefGoogle Scholar
  4. Assali, N. S., Rauramo, L., and Peltonen, T., 1960, Measurements of uterine blood flow and uterine metabolism, VIII Uterine and fetal blood flow and oxygen consumption in early human pregnancy, Am. J. Obstet. Gynecol. 79: 86–98.Google Scholar
  5. Astrup, P., 1972, Some physiological and pathological effects of moderate carbon monoxide exposure, Br. Med. J. 1972: 447–452.CrossRefGoogle Scholar
  6. Astrup, P., Trolle, D., Olsen, H. M., and Kjeldsen, K., 1972, Effect of carbon monoxide exposure on fetal development. Lancet 1972: 1220–1222.CrossRefGoogle Scholar
  7. Ayres, S. M., Mueller, H. S., Gregory, J. J., Gianelli, S., and Penny, J. L., 1969, Systemic and myocardial hemodynamic response to relatively small concentrations of carboxyhemoglobin (COHB), Arch. Environ. Health 18: 699–709.Google Scholar
  8. Barrott, H. G., 1937, Effects of temperature, hdmidity, and other factors on hatch of hen’s eggs and on energy metabolism of chick embryos, U.S. Dept. Agric. Bull. No. 553, pp. 1–45.Google Scholar
  9. Barth, D. S., Romanovsky, J. C., Knelson, J. H., Altshuller, A. P., and Horton, R. J. M., 1971, Discussion of the report of Heuss et al. (see below). J. Air Pollut. Control Assoc. 21: 544–548.CrossRefGoogle Scholar
  10. Beard, R. W., 1962, Response of the fetal heart and maternal circulation to adrenalin and nonadrenalin, Br. Med. J. 1962: 443–446.CrossRefGoogle Scholar
  11. Beard, R. R., and Wertheim, G. A., 1967, Behavioral impairment associated with small doses of carbon monoxide, Am. J. Public Health 57: 2012–2022.CrossRefGoogle Scholar
  12. Beaudoing, A., Gachon, J., Butin, L. P., and Bost, M., 1969, Les conséquences foetales de l’intoxication oxycarbonée de la mère, Pèdiatrie 24: 539–553.Google Scholar
  13. Bingham, E., Pfitzer, E. A., Barkley, W., and Radford, E. P., 1968, Alveolar macrophages: Reduced number in rats after prolonged inhalation of lead sequioxide, Science 162: 1297–1299.CrossRefGoogle Scholar
  14. Bodansky, O., 1951, Methemoglobinemia and methemoglobin-producing compounds, Pharmacol. Rev. 3: 144–196.Google Scholar
  15. Boell, E. J., 1955, Energy exchange and enzyme development during embryogenesis, in: Analysis of Development ( B. H. Willier, P. A. Weiss, and V. Hamburger, eds.) pp. 520–555, W. B. Saunders, Philadelphia.Google Scholar
  16. Brent, R. L., and Franklin, J. B., 1960, Uterine vascular clamping: New procedure for the study of congenital malformations, Science 132: 89–91.CrossRefGoogle Scholar
  17. Brinkman, R., Lamberts, H. B., and Veninga, T. S., 1964, Radiomimetic toxicity of ozonised air, Lancet 1964: 133–136.CrossRefGoogle Scholar
  18. Büchner, F., 1955, Experimentelle Entwicklungsstörungen durch allgemeinen Sauerstoffmangel, Klin. Wochenschr. 26: 38–42.CrossRefGoogle Scholar
  19. Butler, N. R., and Goldstein, H., 1973, Smoking in pregnancy and subsequent child development, Br. Med. J. 4: 573–575.CrossRefGoogle Scholar
  20. Chernoff, N., 1969, Physiological and teratological effects of epinephrine and vasopressin on the fetal rat, Ph. D. dissertation, University of Miami, Coral Gables, Florida.Google Scholar
  21. Chernoff, N., and Grabowski, C. T., 1971, Responses of the rat foetus to maternal injections of adrenaline and vasopressin, Br. J. Pharmacol. 43: 270–278.Google Scholar
  22. Grist, T., and Hulka, J. F., 1970, Influence of maternal epinephrine on behavior of offspring, Am. J. Obstet. Gynecol. 106: 687–691.Google Scholar
  23. Dareste, M. C., 1877 (2nd ed. 1891), La production artificielle des monstruosités, C. Reinwald et Cie, Paris.Google Scholar
  24. Dawes, G. S., 1968, Foetal and Neonatal Physiology: A Comparative Study of the Changes at Birth, Year Book Medical Publishers, Chicago.Google Scholar
  25. Degenhardt, K. H., 1954, Durch O2—Mangel induzierte Fehlbildungen der Axialgradienten bei Kaninchen, Z. Naturforsch. 9: 530–536.Google Scholar
  26. Degenhardt, K. H., 1958, Analysis of intra-uterine malformations on the vertebral column induced by oxygen deficiency in rabbits, Proc. Xth Int. Congr. Genet., Program 2.Google Scholar
  27. Donarin, A., 1964, Noradrenaline and the foetal heart, Lancet 1964: 756.Google Scholar
  28. Dornhorst, A. C., and Young, I. M., 1952, The action of adrenaline and noradrenaline on the placental and foetal circulation in the rabbit and guinea pig, J. Physiol. 118: 282–288.Google Scholar
  29. DuBois, A. B., 1973, Reprot of Ad Hoc Committee on Carbon Monoxide Poisoning, Bureau of Community Environmental Management, Rockville, Maryland.Google Scholar
  30. Ericson, A. E., 1960, The effect of maternal hypoxia on metanephric development in the hamster, Ph. D. dissertation, Boston University, Boston, Massachusetts.Google Scholar
  31. Ferm, V. H., 1964, Teratogenic effects of hyperbaric oxygen, Proc. Soc. Exp. Biol. Med. 116: 975–976.Google Scholar
  32. Food and Drug Administration, 1972, Teratologic evaluation of FDA 71–9 (sodium nitrite), Bulletin PB-221 794, distributed by National Technical Information Service.Google Scholar
  33. Franklin, J. B., and Brent, R. L., 1964, The effect of uterine vascular clamping on the development of rat embryos three to fourteen days old, J. Morphol. 115: 273–290.CrossRefGoogle Scholar
  34. Freeman, G., Julos, L. T., Furiosi, N. J., Mussenden, R., and Weiss, T. A., 1974, Delayed maturation of rat lung in an environment containing nitrogen dioxide, Am. Rev. Respir. Dis. 110: 754–759.Google Scholar
  35. Gallera, J., 1936, Production artificielle des monstres platyneuriques, Folia Morphol. 6: 203–251.Google Scholar
  36. Geber, W. F., 1966, Developmental effects of chronic maternal audiovisual stress on the rat fetus, J. Embryol. Exp. Morphol. 16: 1–16.Google Scholar
  37. Geber, W. F., and Anderson, T. A., 1967, Abnormal fetal growth in the albino rat and rabbit induced by maternal stress, Biol. Neonat. 11: 209–215.CrossRefGoogle Scholar
  38. Ginsberg, M. D., and Myers, R. E., 1974, Fetal brain damage following maternal carbon monoxide intoxication: An experimental study, Acta Obstet. Gynecol. Scand. 53: 309–317.CrossRefGoogle Scholar
  39. Goldstein, D. P., 1965, Carbon monoxide poisoning in pregnancy, Am. J. Obstet. Gynecol. 92: 526.Google Scholar
  40. Grabowski, C. T., 1961, Lactic acid accumulation as a cause of hypoxia-induced malformations in the chick embryo, Science 134: 1359–1360.CrossRefGoogle Scholar
  41. Grabowski, C. T., 1964, The etiology of hypoxia-induced malformations in the chick embryo, J. Exp. Zool. 157: 307–326.CrossRefGoogle Scholar
  42. Grabowski, C. T., 1970, Embryonic oxygen deficiency—a physiological approach to analysis of teratological mechanisms, Adv. Teratol. 4: 125–169.Google Scholar
  43. Grabowski, C. T., 1973, Fetal cardiac physiology and hypoxia-induced hyperkalemia, Teratology 7: A16.Google Scholar
  44. Grabowski, C. T., and Chernoff, N., 1970, Effects of hypoxia on the cardiovascular physiology of mammalian embryos, Teratology 3: 201.Google Scholar
  45. Hamburgh, M., Mendoza, L. A., Rader, M., Lang, A., Silverstein, H., and Hoffman, K., 1974, Malformations induced in offspring of crowded and parabiotically stressed mice, Teratology 10: 31–37.CrossRefGoogle Scholar
  46. Haring, O. M., 1960, Cardiac malformations in rats induced by exposure of the mother to carbon dioxide during pregnancy, Cir. Res. 8: 1218–1227.CrossRefGoogle Scholar
  47. Haring, O. M., and Polli, J. F., 1957, Experimental production of cardiac malformations, A.M.A. Arch. Pathol. 64: 290–296.Google Scholar
  48. Hellman, L. M., and Pritchard, J. A., 1971, Williams Obstetrics, Appleton-Century, Crofts, New York.Google Scholar
  49. Heuss, J. M., Nebel, G. J., and Colucci, J. M., 1971, National air quality standards of automotive pollutants—a critical review, J. Air Pollut. Control Assoc. 21: 535–544.CrossRefGoogle Scholar
  50. Horvath, S. M., Dahms, T. E., and O’Hanlon, J. F., 1971, Carbon monoxide and human vigilance, Arch. Environ. Health 23: 343–347.Google Scholar
  51. Ingalls, T. H., 1956, Causes and prevention of developmental defects, J. Am. Med. Assoc. 161: 1047–1051.CrossRefGoogle Scholar
  52. Ingalls, T. H., and Curley, F. J., 1957, Principles governing the genesis of congenital malformations induced in mice by hypoxia. N. Engl. J. Med. 257: 1121–1127.CrossRefGoogle Scholar
  53. Jaffee, O. C., 1974, The effects of moderate hypoxia and moderate hypoxia plus hypercapnea on cardiac development in chick embryos, Teratology 10: 275–282.CrossRefGoogle Scholar
  54. Jilek, L., Trâvníckovâ, E., and Trojan, S., 1970, Characteristic metabolic and functional responses to oxygen deficiency in the central nervous system, in: Physiology of the Perinatal Period, Vol. II, ( U. Stave, ed.), Appleton-Century, Crofts, New York.Google Scholar
  55. Kalter, H., 1968, Teratology of the Central Nervous System, University of Chicago Press, Chicago.Google Scholar
  56. Kalter, H., and Warkany, J., 1959, Experimental production of congenital malformations in mammals by metabolic procedures, Physiol. Rev. 39: 69–115.Google Scholar
  57. King, C. T. G., Wilk, A., and McClure, F. J., 1962, Carbon dioxide-induced acidosis in pregnant rats and carries susceptibility of their progeny, Proc. Soc. Exp. Biol. Med. 111: 486–489.Google Scholar
  58. Lehrer, S. B., Usubiaga, L. E., and Smith, B. E., 1968, Hybaroxia, a useful new tool in the study of teratogenesis, Teratology 1: 218.Google Scholar
  59. Leist, K. H., and Grauwiler, J., 1974, Fetal pathology in rats following uterine-vessel clamping on day 14 of gestation, Teratology 10: 55–61.CrossRefGoogle Scholar
  60. Longo, L., 1970, Carbon monoxide in the pregnant mother and fetus and its exchange across the placenta, Ann. N.Y. Acad. Sci. 174: 313–341.CrossRefGoogle Scholar
  61. Meier, G. W., Bunch, M. E., Nolan, C. Y., and Scheidler, C. H., 1960, Anoxia, behavioral development, and learning ability: A comparative-experimental approach, Psychol. Monogr. 74: 1–48.CrossRefGoogle Scholar
  62. Moll, W., 1973, Oxygen supply to the human fetus, Bull. Physio.-Pathol. Respir. 9: 1345–1364.Google Scholar
  63. Mosher, J. C., MacBeth, W. G., Leonard, M. J., Mullins, T. P., and Brunelle, M. F., 1970, The distribution of contaminants in the Los Angeles basin resulting from atmospheric reaction and transport, J. Air Pollut. Control Assoc. 20: 35–42.CrossRefGoogle Scholar
  64. Mueller, G. L., and Graham, S., 1955, Intrauterine death of the fetus due to carbon monoxide poisoning, N. Engl. J. Med. 252: 1075–1078.CrossRefGoogle Scholar
  65. Murakami, U., and Kameyama, Y., 1963, Vertebral malformation in the mouse foetus caused by maternal hypoxia during early stages of pregnancy. J. embryol. Exp. Morphol. 11: 107–118.Google Scholar
  66. Petropoulos, E. A., Vernadakis, A., and Timiras, P. S., 1969, Nucleic acid content in developing rat brain after prenatal and/or neonatal exposure to high altitude, Fed. Proc. 28: 1001–1005.Google Scholar
  67. Rübasaamen, H., 1950, Uber die teratogenetische Wirkung des Missbildungen bei Mensch and Tier, Beitr. Pathol. Anat. 112: 336–379.Google Scholar
  68. Rudolph, A. M., 1974, quoted by Hafez, E. S. E., The mammalian fetus: A dedicational symposium, a report of a metting, Teratology 10: 9–12.Google Scholar
  69. St.-Hilaire, G., 1820, Des différents états de pesanteur des oeufs au commencement et à la fin de l’incubation, J. Complentaire Sci. Mid. 7:271 (quoted in Dareste, 1877 ).Google Scholar
  70. Schulte, J. H., 1963, Effects of mild carbon monoxide intoxication, Arch. Environ. Health 7: 524–530.Google Scholar
  71. Shepard, T. H., Tanimura, T., and Robkin, M. A., 1970, Energy metabolism in early mammalian embryos, in: Changing Syntheses in Development, 29th Symposium of the Society for Developmental Biology (M. Runner, ed.), pp. 42–58.Google Scholar
  72. Stewart, R. D., Baretta, E. D., Platte, L. R., Stewart, E., Kalbfleisch, J. H., van Yserloo, B., and Rimm, A. A., 1974, Carboxyhemoglobin levels in American blood donors, J. Am. Med. Assoc. 229: 1187–1195.CrossRefGoogle Scholar
  73. Stockard, C. R., 1921, Developmental rate and structural expression, An experimental study of twins, “double monsters,” and single deformities, and the interaction among embryonic organs during their origin and development. Am. J. Anat. 28: 115–278.CrossRefGoogle Scholar
  74. Stockinger, H. E., and Coffin, D. L., 1968, Biologic effects of air pollution, Air Pollut. 1: 445–546.Google Scholar
  75. Taylor, L. W., and Kruetziger, G. O., 1966, The gaseous environment of the chick embryo in relation to its development and hatchability, 3. Effect of carbon dioxide and oxygen levels during the period of the ninth through the twelfth days of incubation, Poult. Sci. 45: 867–884.CrossRefGoogle Scholar
  76. Taylor, L. W., Sjodin, R. A., and Gunns, C. A., 1956, The gaseous environment of the chick embryo in relation to its development and hatchability, Poult. Sci. 35: 1206–1215.CrossRefGoogle Scholar
  77. Taylor, L. W. Kreutziger, G. O., and Abercrombie, G. L., 1971, The gaseous environment of the chick embryo in relation to its development and hatchability, 5. Effect of carbon dioxide and oxygen levels during the terminal days of incubation, Poult. Sci. 50: 66–78.CrossRefGoogle Scholar
  78. Thompson, W. R., and Olian, S., 1961, Some effects on offspring behavior of maternal adrenalin injection during pregnancy in three inbred mouse strains, Psychol. Rep. 8: 87–90.CrossRefGoogle Scholar
  79. Timiras, P., and Woolley, D. E., 1966, Functional and morphologic development of brain and other organs of rats at high altitudes, Fed. Proc. 25: 1312–1320.Google Scholar
  80. Towbin, A., 1969, Mental retardation due to germinal matrix infarction, Science 164: 156–160.CrossRefGoogle Scholar
  81. Tumasonomis, C. F., and Baker, F. D., 1972, Influence of carbon monoxide upon some respiratory enzymes of the chick embryo. Bull. Environ. Contam. Toxicol. 8: 113–119.CrossRefGoogle Scholar
  82. U.S. Navy Diving Manual, 1970, NAVSHIPS 0994–001–9010, Navy Dept., Washington, D.C.Google Scholar
  83. Van Liere, E. J., and Stickney, J. C., 1963, Hypoxia, A Detailed Review of the Effects of Oxygen Want on the Body, University of Chicago Press, Chicago.Google Scholar
  84. Vierck, C. J., and Meier, G. W., 1963, Effects of prenatal hypoxia upon locomotor activity of the mouse, Exp. Neurol. 7: 418–425.CrossRefGoogle Scholar
  85. Ward, T. L., 1972, Prenatal stress feminizes and demasculinizes the behavior of males. Science 175: 82–84.CrossRefGoogle Scholar
  86. Wilson, J. G., 1972, Environmental effects on development, in: Pathophysiology of Gestation, Vol. 2 (N. S. Assali, ed.), Academic Press, New York.Google Scholar
  87. Windle, W. F., 1963. Neuropathology of certain forms of mental retardation, Science 140: 1186–1189.CrossRefGoogle Scholar
  88. Windle, W. F., 1966, Role of respiratory distress in asphyxial brain damage of the newborn, Cerebral Palsy J. 27: 3–7.Google Scholar
  89. Windle, W. F., and Becker, R. F., 1943, Asphyxia neonatorium, an experimental study in the guinea pig, Am. J. Obstet. Gynecol. 45: 183–200.Google Scholar

Copyright information

© Plenum Press, New York 1977

Authors and Affiliations

  • Casimer T. Grabowski
    • 1
  1. 1.Department of BiologyUniversity of MiamiCoral GablesUSA

Personalised recommendations