Temporal Aspects of Macromolecular Synthesis in Eukaryotic Cells

  • E. Brad Thompson
Part of the ALZA Conference Series book series (ALZA, volume 2)


To provide better drug therapy through more sensible temporal delivery requires knowledge of the kinetic relations between intercellular and intracellular activities at all levels, from the half-life of specific molecules to the cyclic rhythmicity of the whole organism. For any given drug and pathological condition, the importance of one or another level may predominate. Certainly many, if not most, of the drugs in use today affect the molecular activities of many tissues. This paper therefore will attempt to discuss the basic information available regarding the temporal relationships of the macromolecular processes in eukaryotic cells.


Temporal Aspect Large Ribosomal Subunit Tyrosine Aminotransferase Macromolecular Synthesis Aryl Hydrocarbon Hydroxylase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Hartwell, L.H., J. Culotti and B. Reid. Genetic Control of the Cell-Division Cycle in Yeast. I. Detection of Mutants. Proc. Nat. Acad. Sci. USA 66, 352–359 (1970).CrossRefGoogle Scholar
  2. 2.
    Konopka, R. and S. Benzer. Clock Mutants of Drosophila Melanogaster. Proc. Nat. Acad. Sci. USA 68, 2112–2116 (1971).CrossRefGoogle Scholar
  3. 3.
    Anonymous. Is it Time to Wind Up the Biological Clock? Nature-New Biol. 231, 97-98 (1971).Google Scholar
  4. 4.
    Young, D.A. Glucocorticoid Action on Rat Thymus Cells. II. Inter-relationships Between Ribonucleic Acid and Protein Metabolism and Between Cortisol and Substrate Effects on These Metabolic Parameters In Vitro. J. Biol. Chem. 245, 2747–2752 (1970).Google Scholar
  5. 5.
    Mosher, K.M., D.A. Young and A. Munck. Evidence for Irreversible, Actinomycin D-Sensitive, and Temperature-Sensitive Steps Following Binding of Cortisol to Glucocorticoid Receptors and Preceding Effects on Glucose Metabolism in Rat Thymus Cells. J. Biol. Chem. 246, 654–659 (1971).Google Scholar
  6. 6.
    Nebert, D.W. and L.L. Bausserman. Aryl Hydrocarbon Hydroxylase Induction in Cell Culture as a Function of Gene Expression. Ann. N.Y. Acad. Sci. 179, 561–579 (1971).CrossRefGoogle Scholar
  7. 7.
    Benedict, W.F., J.E. Gielen and D.W. Nebert. Polycyclic Hydrocarbon-Produced Toxicity, Transformation, and Chromosomal Aberrations as a Function of Aryl Hydrocarbon Hydroxylase Activity in Cell Cultures. Int. J. Cancer 9, 435–451 (1972).CrossRefGoogle Scholar
  8. 8.
    Bremer, H. and D. Yuan. Chain Growth Rate of Messenger RNA in Escherichia coli Infected with Bacteriophage T4. J. Molec. Biol. 34, 527–540 (1968).CrossRefGoogle Scholar
  9. 9.
    Watson, J.D. Molecular Biology of the Gene, New York, W.A. Benjamin, Inc. 2nd ed., 1970, 662 pp.Google Scholar
  10. 10.
    Burgess, R.R. RNA Polymerase. Ann. Rev. Biochem. 40, 711–740 (1971).CrossRefGoogle Scholar
  11. 11.
    Darlix, J., A. Sentenac and P. Fromageot. Etude du RNA Synthetise’ In Vitro. Biochim. Biophys. Acta 166, 438–458 (1968).Google Scholar
  12. 12.
    Jacob, F. and J. Monod. Genetic Regulatory Mechanisms in the Synthesis of Proteins. J. Molec. Biol. 3, 318–356 (1961).CrossRefGoogle Scholar
  13. 13.
    Volkin, E. and L. Astrachan. Intracellular Distribution of Labelled Ribonucleic Acid After Phage Infection of Escherichia coli. Virology 2, 433–437 (1956).CrossRefGoogle Scholar
  14. 14.
    Lipmann, F. Messenger Ribonucleic Acid. Progr. Nucl. Acid Res. 1, 135–158 (1963).CrossRefGoogle Scholar
  15. 15.
    Singer, M.F. and P. Leder. Messenger RNA: An Evaluation. Ann. Rev. Biochem. 35, 195–230 (1966).CrossRefGoogle Scholar
  16. 16.
    Woese, C.R. The Genetic Code, The Molecular Basis for Genetic Expression. New York, Harper and Row, 1967, 200 pp.Google Scholar
  17. 17.
    Geiduschek, E.P. and R. Haselkorn. Messenger RNA. Ann. Rev. Biochem. 38, 647–676 (1969).CrossRefGoogle Scholar
  18. 18.
    McAuslan, B.R. The Induction and Repression of Thymidine Kinase in the Poxvirus-Infected HeLa Cell. Virology 21, 383–389 (1963).CrossRefGoogle Scholar
  19. 19.
    Pollock, M.R. The Differential Effect of Actinomycin D on the Biosynthesis of Enzymes in Bacillus subtilis and Bacillus cereus. Biochim. Biophys. Acta 76, 80–93 (1963).CrossRefGoogle Scholar
  20. 20.
    Marks, P.A., E.R. Burka and D. Schlessinger. Protein Synthesis in Erythroid Cells. I. Reticulocyte Ribosomes Active in Stimulating Amino Acid Incorporation. Proc. Nat. Acad. Sci. USA 48, 2163–2171 (1962).CrossRefGoogle Scholar
  21. 21.
    Brown, D.D. and E. Littna. RNA Synthesis During the Development of Xenopus laevis, the South African Clawed Toad. J. Molec. Biol. 8, 669–687 (1964).CrossRefGoogle Scholar
  22. 22.
    Gross, P. The Control of Protein Synthesis in Embryonic Development and Differentiation. Curr. Top. Devel. Biol. 2, 1–46 (1967).CrossRefGoogle Scholar
  23. 23.
    Revel, M. and H.H. Hiatt. The Stability of Liver mRNA. Proc. Nat. Acad. Sci. USA 51, 810–818 (1964).CrossRefGoogle Scholar
  24. 24.
    Staehelin, T., F.O. Wetstein, and H. Noll. Breakdown of Rat-Liver Ergosomes In Vivo After Actinomycin Inhibition of Messenger RNA Synthesis. Science 140, 180–183 (1963).CrossRefGoogle Scholar
  25. 25.
    Penman, S., C. Vesco and M. Penman. Localization and Kinetics of Formation of Nuclear Heterodisperse RNA, Cytoplasmic Heterodisperse RNA and Polyribosome-Associated Messenger RNA in HeLa Cells. J. Molec. Biol. 34, 49–69 (1968).CrossRefGoogle Scholar
  26. 26.
    Kafatos, F.C. and J. Reich. Stability of Differentiation-Specific and Nonspecific Messenger RNA in Insect Cells. Proc. Nat. Acad. Sci. USA 60, 1458–1465 (1968).CrossRefGoogle Scholar
  27. 27.
    Thompson, E.B., D.K. Granner and G.M. Tomkins. Superinduction of Tyrosine Aminotransferase by Actinomycin D in Rat Hepatoma (HTC) Cells. J. Molec. Biol. 54, 159–175(1970).CrossRefGoogle Scholar
  28. 28.
    Clayton, R.M., D.E.S. Truman and J.C. Campbell. A Method for Direct Assay of Messenger RNA Turnover for Different Crystallines in the Chick Lens. Cell Differentiation 1, 25–35(1972).CrossRefGoogle Scholar
  29. 29.
    Spohr, G. and K. Scherrer. Differential Turnover of Two Messengers in One Cell Type: 9S Globin mRNA and 12S mRNA in Differentiating Avian Erythroblasts. Cell Differentiation 1, 53–61 (1972).CrossRefGoogle Scholar
  30. 30.
    Harris, H. Nuclear Ribonucleic Acid. Progr. Nucl. Acid Res. 2, 19–59 (1963).CrossRefGoogle Scholar
  31. 31.
    Attardi, G., H. Parnas, M. Hwang, and B. Attardi. Giant-Size Rapidly Labelled Nuclear Ribonucleic Acid and Cytoplasmic Messenger Ribonucleic Acid in Immature Duck Erythrocytes. J. Molec. Biol. 20,145–182 (1966).CrossRefGoogle Scholar
  32. 32.
    Wall, R. and J.E. Darnell. Presence of Cell and Virus Specific Sequences in the Same Molecules of Nuclear RNA from Virus Transformed Cells. Nature-New Biol. 232, 73–76 (1971).CrossRefGoogle Scholar
  33. 33.
    Melli, M. and R.E. Pemberton. New Method of Studying the Precursor-Product Relationship Between High Molecular Weight RNA and Messenger RNA. Nature-New Biol. 236, 172–173 (1972).CrossRefGoogle Scholar
  34. 34.
    Attardi, G. and F. Amaldi. Structure and Synthesis of Ribosomal RNA. Ann. Rev. Biochem. 39, 183–226 (1970).CrossRefGoogle Scholar
  35. 35.
    Loeb, J.N., R.R. Howell and G.M. Tomkins. Turnover of Ribosomal RNA in Rat Liver. Science 149, 1093–1095 (1965).CrossRefGoogle Scholar
  36. 36.
    Hadjiolov, A.A. Studies on the Turnover and Messenger Activity of Rat-Liver Ribonucleic Acids. Biochim. Biophys. Acta 119, 547–556 (1966).Google Scholar
  37. 37.
    Bernhardt, D. and J.E. Darnell, Jr. tRNA Synthesis in HeLa Cells: A Precursor to tRNA and the Effects of Methionine Starvation on tRNA Synthesis. J. Molec. Biol. 42, 43–56 (1969).CrossRefGoogle Scholar
  38. 38.
    Steven, R.H. and H. Amos. RNA Metabolism in HeLa Cells at Reduced Temperature II. Steps in the Processing of Transfer RNA. J. Cell Biol. 54, 1–7 (1972).CrossRefGoogle Scholar
  39. 39.
    Penman, S., C. Vesco, R. Weinberg and E. Zylber. The RNA Metabolism of Nucleoli and Mitochondria in Mammalian Cells. Cold Spring Harbor Symp. Quant. Biol. 34, 535–546 (1969).CrossRefGoogle Scholar
  40. 40.
    Anonymous summary. The Story of Poly A. Nature 235, 1-2 (1972).Google Scholar
  41. 41.
    Dintzis, H.M. Assembly of the Peptide Chains of Hemoglobin. Proc. Nat. Acad. Sci. USA 47, 247–261 (1961).CrossRefGoogle Scholar
  42. 42.
    Penman, S., K. Scherrer, Y. Becker and J.E. Darnell, Jr. Polyribosomes in Normal and Poliovirus-Infected HeLa Cells and Their Relationship to Messenger RNA. Proc. Nat. Acad. Sci. USA 49, 654–662 (1963).CrossRefGoogle Scholar
  43. 43.
    Kiho, Y. and A. Rich. Induced Enzyme Formed on Bacterial Polyribosomes. Proc. Nat. Acad. Sci. USA 51, 111–118 (1964).CrossRefGoogle Scholar
  44. 44.
    Anfinsen, C.B. Self-Assembly of Macromolecular Structures. Spontaneous Formation of the Three-Dimensional Structure of Proteins. Develop. Biol. Suppl. 2, 1–20 (1968).Google Scholar
  45. 45.
    Taniuchi, H. and C.B. Anfinsen. Simultaneous Formation of Two Alternative Enzymically Active Structures by Complementation of Two Overlapping Fragments of Staphylococcal Nuclease. J. Biol. Chem. 246, 2291–2301 (1971).Google Scholar
  46. 46.
    Miller, J.V. Jr., P. Cuatrecasas and E.B. Thompson. Partial Purification by Affinity Chromatography of Tyrosine Aminotransferase-Synthesizing Ribosomes from Hepatoma Tissue Culture Cells. Proc. Nat. Acad. Sci. USA 68, 1014–1018 (1971).CrossRefGoogle Scholar
  47. 47.
    Schimke, R.T. Regulation of Protein Degradation in Mammalian Tissues. Mammalian Protein Metabolism, ed. H.N. Munro. New York, Academic Press, 1970, pp. 177–228.Google Scholar
  48. 48.
    Greengard, O. and P. Feigelson. The Activation and Induction of Rat Liver Tryptophan Pyrrolase In Vivo by its Substrate. J. Biol. Chem. 236, 158–161 (1961).Google Scholar
  49. 49.
    Weissmann, G. and L. Thomas. The Effects of Corticosteroids Upon Connective Tissue and Lysosomes. Rec. Progr. Horm. Res. 20, 215–245 (1964).Google Scholar
  50. 50.
    Weissmann, G. The Effects of Steroids and Drugs on Lysosomes. Lysosomes in Biology and Pathology., eds. J.T. Dingle and H.B. Fell. New York, John Wiley and Sons, 1969, pp 276–295.Google Scholar
  51. 51.
    Hershko, A. and G.M. Tomkins. Studies on the Degradation of Tyrosine Aminotransferase in Hepatoma Cells in Culture. J. Biol. Chem. 246, 710–714 (1971).Google Scholar
  52. 52.
    Hershko, A., P. Mamont, R. Shields, and G.M. Tomkins. Pleiotypic Response. Nature-New Biol. 232, 206–211 (1971).Google Scholar
  53. 53.
    Aurichio, F., D. Martin, Jr. and G. Tomkins. Control of Degradation and Synthesis of Induced Tyrosine Aminotransferase Studied in Hepatoma Cells in Culture. Nature 224, 806–808 (1969).CrossRefGoogle Scholar
  54. 54.
    Price, V.E., W.R. Sterling, V.A. Tarantola, R.W. Hartley and M. Rechcigl, Jr. The Kinetics of Catalase Synthesis and Destruction In Vivo. J. Biol. Chem. 237, 3468–3475 (1962).Google Scholar
  55. 55.
    Segal, H.L. and Y.S. Kim. Glucocorticoid Stimulation of the Biosynthesis of Glutamic-Alanine Transaminase. Proc. Nat. Acad. Sci. USA 50, 912–918 (1963).CrossRefGoogle Scholar
  56. 56.
    Schimke, R.T., E.W. Sweeney and C.M. Berlin. An Analysis of the Kinetics of Rat Liver Tryptophan Pyrrolase Induction: The Significance of Both Enzyme Synthesis and Degradation. Biochem. Biophys. Res. Commun. 15, 214–219 (1964).CrossRefGoogle Scholar
  57. 57.
    Berlin, C.M. and R.T. Schimke. Influence of Turnover Rates on the Responses of Enzymes to Cortisone. Mol. Pharmacol. 1, 149–156 (1965).Google Scholar
  58. 58.
    Granner, D.K., S. Hayashi, E.B. Thompson and G.M. Tomkins. Stimulation of Tyrosine Aminotransferase Synthesis by Dexamethasone Phosphate in Cell Culture. J. Molec. Biol. 35, 291–301 (1968).CrossRefGoogle Scholar
  59. 59.
    Granner, D.K., E.B. Thompson and G.M. Tomkins. Dexamethasone Phosphate-Induced Synthesis of Tyrosine Aminotransferase in Hepatoma Tissue Culture Cells. J. Biol. Chem. 245, 1472–1478 (1970).Google Scholar
  60. 60.
    Thompson, E.B., S.R. Levisohn and J.V. Miller, Jr. Steroid Control of Tyrosine Aminotransferase in Hepatoma Tissue Culture (HTC) Cells. Hormal Steroids, Proc. 3rd International Congress. Amsterdam, Excerpta Medical International Congress Series No. 219, 1970 pp. 463-471.Google Scholar
  61. 61.
    Littlefield, J.W. The Periodic Synthesis of Thymidine Kinase in Mouse Fibroblasts. Biochim. Biophys. Acta 114, 398–403 (1966).Google Scholar
  62. 62.
    Martin, D.W. Jr., G.M. Tomkins and M.A. Bresler. Control of Specific Gene Expression Examined in Synchronized Mammalian Cells. Proc. Nat. Acad. Sci. USA 63, 842–849 (1969).CrossRefGoogle Scholar
  63. 63.
    Martin, D.W. Jr. and G.M. Tomkins. The Appearance and Disappearance of the Post-Transcriptional Repression of Tyrosine Aminotransferase Synthesis During the HTC Cell Cycle. Proc. Nat. Acad. Sci. USA 65, 1064–1068 (1970).CrossRefGoogle Scholar
  64. 64.
    Hartwell, L.H. Biochemical Genetics of Yeast. Ann. Rev. Genetics 4, 373–396 (1970).CrossRefGoogle Scholar
  65. 65.
    B. Ephrussi and M.C. Weiss. Regulation of the Cell Cycle in Mammalian Cells. Control Mechanisms in Developmental Processes, ed. M. Locke. New York, Academic Press, 1967 pp 136–169.Google Scholar
  66. 66.
    Zylber, M. and S. Penman. Synthesis of 5S and 4S RNA in Metaphase-Arrested HeLa Cells. Science 172, 947–949 (1971).CrossRefGoogle Scholar
  67. 67.
    Stein, G. and R. Baserga. Nuclear Proteins and the Cell Cycle. Adv. Cancer Res. 15, 287–330 (1972).CrossRefGoogle Scholar
  68. 68.
    Tomkins, G.M., T.D. Gelehrter, D. Granner, D. Martin Jr., H.H. Samuels and E. Brad Thompson. Control of Specific Gene Expression in Higher Organisms. Science 166, 1474–1480 (1969).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1973

Authors and Affiliations

  • E. Brad Thompson
    • 1
  1. 1.Laboratory of BiochemistryNational Cancer InstituteBethesdaUSA

Personalised recommendations