Leukocyte Cyclic AMP: Pharmacological Regulation and Possible Physiological Implications

  • H. R. Bourne
Part of the Alza Conference Series book series (AEMB, volume 195B)


Knowledge of both cyclic AMP and the prostaglandins, relative newcomers to biochemical investigation, has burgeoned during the past decade. Cyclic AMP is present in almost every mammalian tissue and its biological role has been well defined in several systems ranging from catabolite repression in E. coli to glycogenolysis in mammalian liver. The prostaglandins are equally ubiquitous, though not so well understood. Various prostaglandins exert impressive effects on synthesis of cyclic AMP in many tissues, causing stimulation of synthesis in some and inhibition in others. About two years ago our and other laboratories began investigating possible effects of both cyclic AMP and the prostaglandins in yet another group of cells, mammalian leukocytes.


Mast Cell Adenylate Cyclase Human Leukocyte Histamine Release Adenylate Cyclase Activity 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Assem, E. S. K., and Schild, H. O., 1969, Inhibition by sympathomimetic amines of histamine release induced by antigen in passively sensitized human lung, Nature (London) 224:1028.CrossRefGoogle Scholar
  2. Birnbaumer, L., and Rodbell, M., 1969, Adenylate cyclase in fat cells, II, Hormone receptors, J. Biol. Chem. 244:3477.Google Scholar
  3. Bourne, H. R., and Melmon, K. L., 1971, Adenylate cyclase in human leukocytes: Evidence for activation by separate beta-adrenergic and prostaglandin receptors, J. Pharmacol. Exp. Ther. 178:1.PubMedGoogle Scholar
  4. Bourne, H. R., Lehrer, R. I., Cline, M. J., and Melmon, K. L., 1971a, Cyclic 3′,5′-adenosine monophosphate in the human leukocyte: Synthesis, degradation, and effects on neutrophil candidacidal activity, J. Clin. Invest. 50:920.PubMedCrossRefGoogle Scholar
  5. Bourne, H. R., Melmon, K. L., and Lichtenstein, L. M., 1971b, Histamine augments leukocyte adenosine 3′,5′-monophosphate and blocks antigenic histamine release, Science (Washington) 173:74 3.Google Scholar
  6. Bourne, H. R., Lichtenstein, L. M., and Melmon, K. L., 1971c, Pharmacologic control of allergic histamine release in vitro: Evidence for an inhibitory role of 3′,5′-adenosine monophosphate in human leukocytes (submitted for publication).Google Scholar
  7. Bourne, H. R., Epstein, L. B., and Melmon, K. L., 1971d, Lymphocyte cyclic adenosine monophosphate (AMP) synthesis and inhibition of phytohemagglutinin-induced transformation, J. Clin. Invest. 50:10a (abstract).CrossRefGoogle Scholar
  8. Butcher, R. W., and Baird, C. E., 1968, Effects of prostaglandins on adenosine 3′,5′-monophosphate levels in fat and other tissues, J. Biol. Chem. 243:1713.PubMedGoogle Scholar
  9. Cline, M. J., 1970, Leukocyte function in inflammation: The ingestion, killing, and digestion of microorganisms, Ser. Haematol. 3:3.PubMedGoogle Scholar
  10. Craddock, C. G., Longmire, R., and McMillan, R., 1971, Lymphocytes and the immune response. New Eng. J. Med. 285:324.Google Scholar
  11. Cross, M. E., and Ord, M. G., 1970, The transformation of lymphocytes by adenosine 3′,5′-cyclic monophosphate, and consequent changes in histone microstructure, Biochem. J. 120:21.Google Scholar
  12. Crunkhorn, P., and Willis, A. L., 1971, Cutaneous reactions to intradermal prostaglandins, Brit. J. Pharmacol. 41:49.Google Scholar
  13. Dimitrov, N. V., Miller, J., and Ziegra, S. R., 1969, The effects of caffeine on glucose metabolism of polymorphonuclear leukocytes, J. Pharmacol. Exp. Ther. 168:240.PubMedGoogle Scholar
  14. Donaldson, V. H., and Evans, R. R., 1963, A biochemical abnormality in hereditary angioneurotic edema: Absence of serum inhibitor of C’1-esterase, Am. J. Med. 35:37.PubMedCrossRefGoogle Scholar
  15. Field, M., 1971, Intestinal secretion: Effect of cyclic AMP and its role in cholera. New Eng. J. Med. 284:1137.Google Scholar
  16. Gilman, A. G., 1970, A protein binding assay for adenosine 3′,5′-cyclic monophosphate, Proc. Nat. Acad. Sci. 67:305.PubMedCrossRefGoogle Scholar
  17. Goldman, J. M., and Hadley, M. E., 1970, Cyclic AMP and adrenergic receptors in melanophore responses to methylxanthines, Eur. J. Pharmacol. 12:365.PubMedCrossRefGoogle Scholar
  18. Hadden, J. W., Hadden, E. M., and Good, R. A., 1971, Adrenergic mechanisms in human lymphocyte metabolism, Biochem. Biophys. Acta. 237:339.PubMedCrossRefGoogle Scholar
  19. Henney, C. S., and Lichtenstein, L. M., 1971, The role of cyclic AMP in the cytolytic activity of lymphocytes, J. Immunol. 107:610.PubMedGoogle Scholar
  20. Hirschhorn, R., Grossman, J., and Weissmann, G., 1970, Effect of cyclic 3′,5′-adenosine monophosphate on lymphocyte transformation, Proc. Soc. Exp. Biol. Med. 133:1361.PubMedGoogle Scholar
  21. Ishizaka, T., Ishizaka, K., Orange, R. P., and Austen, K. F., 1971, The pharmacologic inhibition of the antigen induced release of nistamine and slow reacting substance of anaphylaxis (SRS-A) from monkey lung tissues mediated by human IgE, J. Immunol. 106:1267.Google Scholar
  22. Kimberg, D. V., Field, M., Johnson, J., Henderson, A., and Gushon, E., 1971, Stimulation of intestinal mucosal adenylate cyclase by cholera enterotoxin and prostaglandins, J. Clin, Invest. 50:1218.CrossRefGoogle Scholar
  23. Klein, I., and Levey, G. S., 1971, Activation of myocardial adenylate cyclase by histamine in guinea pig, cat, and human heart, J. Clin. Invest. 50:1012.PubMedCrossRefGoogle Scholar
  24. Koopman, W. J., Orange, R. P., and Austen, K. F., 1970, Immunochemical and biologic properties of rat IgE. III. Modulation of the IgE-mediated release of slow-reacting substance of anaphylaxis by agents influencing the level of cyclic 3′,5′-adenosine monophosphate, J. Immunol. 105: 1096.Google Scholar
  25. Krishna, G., Weiss, B., and Brodie, B. B., 1968, A simple, sensitive method for the assay of adenylate cyclase, J. Pharmacol. Exp. Ther. 163:379.PubMedGoogle Scholar
  26. Leahy, D. R., McLean, E. R., Jr., and Bonner, J. T., 1970, Evidence for cyclic-3′,5′-adenosine monophosphate as chemotactic agent for polymorphonuclear leukocytes, Blood 36:52.PubMedGoogle Scholar
  27. Lehrer, R. I., and Cline, M. J., 1969, Leukocyte myeloperoxidase deficiency and disseminated candidiasis: The role of myeloperoxidase in resistance to Candida infection, J. Clin. Invest. 48:1478.PubMedCrossRefGoogle Scholar
  28. Lichtenstein, L. M., and Margolis, S., 1968, Histamine release in vitro: inhibition by catecholamines and methylxanthines, Science (Washington) 161:902.CrossRefGoogle Scholar
  29. Lichtenstein, L. M., Norman, P. S., Winkerwerder, W. L., and Osler, A. G., 1966, In vitro studies of ragweed allergy: Changes in cellular and humoral activity associated with specific desensitization, J. Clin. Invest. 45:1126.PubMedCrossRefGoogle Scholar
  30. Lichtenstein, L. M., and Osler, A. G., 1964, Studies of the mechanisms of hypersensitivity phenomena. IX. Histamine release from human leukocytes by ragweed pollen antigen, J. Exp. Med. 120:507.PubMedCrossRefGoogle Scholar
  31. McKinney, G. R., and Lish, P. M., 1966, Interaction of beta-adrenergic blockade and certain vasodilators in dextian-induced rat paw edema, Proc. Soc. Exp. Biol. Med. 121:494.PubMedGoogle Scholar
  32. McManus, J. P., and Whitfield, J. F., 1969a, Stimulation of DNA synthesis and mitotic activity of thymic lymphocytes by cyclic adenosine 3′,5′-monophosphate, Exp. Cell. Res. 58:188.CrossRefGoogle Scholar
  33. McManus, J. P., and Whitfield, J. F., 1969b, Mediation of the mitogenic action of growth hormone by adenosine 3′,5′ monophosphate (cyclic AMP) Proc. Soc. Exp. Biol. Med. 132:409.Google Scholar
  34. McManus, J. P., Whitfield, J. F., and Yondale, T., 1971, Stimulation by epinephrine of adenylate cyclase activity, cyclic AMP formation, DNA synthesis, and cell proliferation in populations of rat thymic lymphocytes, J. Cell. Physiol. 77:103.CrossRefGoogle Scholar
  35. Makman, M. H., 1971, Properties of adenylate cyclase of lymphoid cells, Proc. Nat. Acad. Sci. 68:885.PubMedCrossRefGoogle Scholar
  36. Mangianello, V., Evans, W. H., Stossel, T. P., Mason, R. J., and Vaughan, M., 1972, The effect of polystyrene beads on cyclic AMP concentration in leukocytes, J. Clin. Invest. (in press).Google Scholar
  37. Marquis, N. R., Becker, J. A., and Vigdahl, R. L., 1970, Platelet aggregation. III. An epinephrine induced decrease in cyclic AMP synthesis, Biochem. Biophys. Res. Comm. 39:783.PubMedCrossRefGoogle Scholar
  38. Marumo, F., and Edelman, I., 1971, Effects of Ca++ and prostaglandin E, on vasopressin activation of renal adenylate cyclase, J. Clin. Invest. 50:1613.PubMedCrossRefGoogle Scholar
  39. May, C. D., Lyman, M., and Alberto, R., 1970, Effects of compounds which inhibit lymphocyte stimulaticn on the utilization of glucose by leukocytes, J. Allergy 46:21.PubMedCrossRefGoogle Scholar
  40. Nakano, J., and Oliver, R. D., 1970, Effect of histamine and its derivatives on lipolysis in isolated rat fat cells, Arch. Int. Pharmacodynam. 186:339.Google Scholar
  41. Novogrodsky, A., and Katchalski, E., 1970, Effect of phytohemagglutinin and prostaglandins on cyclic AMP synthesis in rat lymph node lymphocytes, Eiochem. Biophys. Acta. 215:291.CrossRefGoogle Scholar
  42. Park, B. H., Good, R. A., Beck, N. P., and Davis, B. B., 1971, Concentration of cyclic adenosine 3′,5′-monophosphate in human leukocytes during phagocytosis, Nature New Biol, 229:27.PubMedGoogle Scholar
  43. Rasmussen, H., 1970, Cell communication, calcium ion, and cyclic adenosine monophosphate. Science (Vashington) 170:404.CrossRefGoogle Scholar
  44. Rigas, D. A., and Tisdale, V. V., 1969, Bio-assay and dose-response of the mitogenic activity of the phytohemagglutinin of Phaseolus vulgaris, Experientia 25:399.PubMedCrossRefGoogle Scholar
  45. Rigby, P. G., and Ryan, W. L., 1970, The effect of cyclic AMP and related compounds on human lymphocyte transformation (HLT) stimulated by phytohemagglutinin, Rev. Europ. Etudes Clin. et Biol. 15:774.Google Scholar
  46. Robison, G. A., Butcher, R. W., and Sutherland, E. W., 1967, Adenylate cyclase as an adrenergic receptor, Ann. N. Y. Acad. Sci. 139:103.CrossRefGoogle Scholar
  47. Scott, R. E., 1970, Effects of prostaglandins, epinephrine, and NaF on human leukocyte, platelet and liver adenylate cyclase, Blood 35:514.PubMedGoogle Scholar
  48. Sheldon, J. M., Husted, J. R., and Lovell, R. G., 1951, Effect of isuprel on antigen-antibody and histamine skin reaction, Ann. of Allergy 9:45.Google Scholar
  49. Shimizu, H., Daly, J. W., and Creveling, C. R., 1969, A radioisotopic method for measuring the formation of adenosine 3′,5′-cyclic no nophosphate in incubated slices of brain, J. Neurochem. 16:1609.PubMedCrossRefGoogle Scholar
  50. Smith, J. W., Steiner, A. L., Newberry, W. M., Jr., and Parker, C. W., 1971a, Cyclic adenosine 3′,5′-monophosphate in human lymphocytes: Alterations after phytohemagglutinin stimulation, J. Clin. Invest. 50:432.PubMedCrossRefGoogle Scholar
  51. Smith, J. W., Steiner, A. L., and Parker, C. W., 1971b, Human lymphocyte metabolism: Effects of cyclic and noncyclic nucleotides on stimulation by phytohemagglutinin, J. Clin. Invest. 50:442.PubMedCrossRefGoogle Scholar
  52. Spector, W. G., and Willoughby, D. A., 1965, Chemical mediators. III. in The Inflammatory Process (Zweifach, B. W., Grant, L., and McCluskey, R. T., eds.), pp. 427–448, Academic Press, New York.Google Scholar
  53. Stossel, T. P., Murad, F., Mason, R. J., and Vaughan, M., 1970, Regulation of glycogen in polymorphonuclear leukocytes, J. Biol, Chenu 245:6228.Google Scholar
  54. Stossel, T. P., Polland, T. D., Mason, R. J., and Vaughan, M., 1971, Isolation and properties of phagocytic vesicles from polymorphonuclear leukocytes, J. Clin. Invest. 50:1745.PubMedCrossRefGoogle Scholar
  55. Sutherland, E. W., Robison, G. A., and Butcher, R. W., 1968, Some aspects of the biological role of adenosine 3′,5′-monophosphate (cyclic AMP), Circulation 37:279.Google Scholar
  56. Szentivanyi, A., 1968, The beta-adrenergic theory of the atopic abnormality in bronchial asthma, J. Allergy 42:203.CrossRefGoogle Scholar
  57. Turtle, J. R., and Kipnis, D. M., 1967, An adrenergic receptor mechanism for the control of cyclic 3′,5′-adenosine monophosphate synthesis in tissues, Biochem. Biophys. Res. Comm. 28:797.PubMedCrossRefGoogle Scholar
  58. Weissmann, G., Dukor, P., and Zurier, R. B., 1971, Effect of cyclic AMP on release of lysosomal enzymes from phagocytes, Nature New Biol. 231:131.PubMedGoogle Scholar
  59. Whitfield, J. F., Perris, A. D., and Yondale, T., 1969, The calcium-mediated promotion of mitotic activity in rat thymocyte populations by growth hormone, neurohormones, parathyroid hormone, and prolactin, J. Cell. Physiol. 73:203.PubMedCrossRefGoogle Scholar
  60. Whitfield, J. F., McManus, J. P., and Gillan, D. J., 1970a, Cyclic AMP mediation of bradykinin-induced stimulation of mitotic activity and DNA synthesis in thymocytes, Proc. Soc. Exp. Biol. Med. 133:1270.PubMedGoogle Scholar
  61. Whitfield, J. F., McManus, J. P., and Rixon, R. H., 1970b, Cyclic AMP-mediated stimulation of thymocyte proliferation by low concentrations of Cortisol, Proc. Soc. Exp. Biol. Med. 134:1170.PubMedGoogle Scholar
  62. Whitfield, J. F., McManus, J. P., and Rixon, R. H., 1970c, Potentiation by antidiuretic hormone (vasopressin) of the ability of parathyroid hormone to stimulate the proliferation of rat thymic lymphocytes, Horm. Metab. Res. 2:233.CrossRefGoogle Scholar
  63. Whitfield, J. F., McManus, J. P., and Rixon, R. H., 1970d, The possible mediation by cyclic AMP of parathyroid hormone-induced stimulation of mitotic activity and deoxyribonucleic acid synthesis in rat thymic lymphocytes, J. Cell. Physiol. 75:213.PubMedCrossRefGoogle Scholar
  64. Whitfield, J. F., McManus, J. P., and Gillan, D. J., 1971e, The possible mediation by cyclic AMP of the stimulation of thymocyte proliferation by vasopressin and the inhibition of this mitogenic action by thyrocalcitonin, J. Cell. Physiol. 76:65.CrossRefGoogle Scholar
  65. Willis, A. L., 1969, Parallel assay of prostaglandin-like activity in rat inflammatory exudate by means of cascade superfusion, J. Pharm. Pharmacol. 21:126.Google Scholar
  66. Wolfe, S. M., and Shulman, N. R., 1969, Adenylate cyclase activity in human platelets, Biochem. Biophys. Res. Commun. 35:265.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1972

Authors and Affiliations

  • H. R. Bourne
    • 1
  1. 1.Division of Clinical PharmacologyUniversity of California School of MedicineSan FranciscoUSA

Personalised recommendations