The Antihypertensive and Natriuretic Endocrine Function of the Kidney: Vascular and Metabolic Mechanisms of the Renal Prostaglandins

  • J. B. Lee
Part of the Alza Conference Series book series (AEMB, volume 195B)


The regulation of the extracellular and intracellular milieu in which all vital cell functions take place is a highly complex phenomenon involving intricate inter-reactions among various hemodynamic, humoral, metabolic and transport phenomena. The central role of the kidney in the maintenance of such homeostatic regulation has for years been widely appreciated. This is particularly reflected by the intense investigations which have been directed to the role of the kidney in the regulation of systemic arterial blood pressure and the mechanisms whereby the kidney, by virtue of its unique reabsorptive, excretory and metabolic activities, is capable of maintaining a remarkably constant internal environment. In the latter instance much attention has been given to the mechanism of sodium transport by the kidney since from an evolutionary standpoint the capacity fcr renal retention or elimination of sodium and water is considered to be a pivotal homeostatic function in the adaptation of terrestrial life to an environment in which exposure to sodium may be minimal or excessive.


Essential Hypertension Renal Blood Flow Total Peripheral Resistance Renovascular Hypertension Renal Medulla 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abodeely, D. A., and Lee, J. B., 1971, The fuel of respiration of outer renal medulla: regulation of intermediate metabolism by extracellular sodium, Am. J. Physiol. 220:1693.PubMedGoogle Scholar
  2. Alexander, J. C., and Lee, J. B., 1970, The effect of osmolality on Na+-K+ ATPase in outer renal medulla, Am. J. Physiol. 219:1742.PubMedGoogle Scholar
  3. Anggard, E., 1971, Studies on the analysis and metabolism of the prostaglandins, Ann. N. Y. Acad. Sci. 180:200.CrossRefGoogle Scholar
  4. Anggard, E., Boman, L. O., Griffith, J. E., III, Larsson, C., and Maunsbach, A., 1971, Subcellular localization of the prostaglandin system in the rabbit renal papilla, Acta Physiol. Scand. (in press, personal communication).Google Scholar
  5. Barger, A. C., and Herd, J. A., 1966, Study of renal circulation in the unanesthetized dog with inert gases: External counting, Proc. Third International congress of Nephrology, Karger, Basel, p. 174.Google Scholar
  6. Benoy, M. P., and Elliot, K. A. C., 1937, The metabolism of lactic and pyruvic acids in normal and tumor tissues: V. Synthesis of carbohydrate, Biochem. J. 31:1268.PubMedGoogle Scholar
  7. Bergstrom, S., and Sjovall, J., 1957, The isolation of prostaglandin. Acta Chem. Scand. 11:1086.CrossRefGoogle Scholar
  8. Bergstrom, S., and Sjovall, J., 1960a, The isolation of prostaglandin F from sheep prostate glands, Acta Chem. Scand. 14:1693.CrossRefGoogle Scholar
  9. Bergstrom, S., and Sjovall, J., 1960b, The isolation of prostaglandin E from sheep prostate glands. Acta Chem. Scand. 14:1701.CrossRefGoogle Scholar
  10. Bergstrom, S., Dressler, F., Krabisch, L., Ryhage, R., and Sjovall, J., 1962a, The isolation and structure of a smooth muscle stimulating factor in normal sheep and pig lungs, Ark. Kemi 20:63.Google Scholar
  11. Bergstrom, S., Dressler, F., Ryhage, R., Samuelsson, B., and Sjovall, J., 1962b, The isolation of twc further prostaglandins from sheep prostate glands. Ark. Kemi 19:563.Google Scholar
  12. Bergstrom, S., Ryhage, R., Samuelsson, B., and Sjovall, J., 1962c, The structure of prostaglandin E, F(1) and F(2), Acta Chem. Scand. 16:501.CrossRefGoogle Scholar
  13. Bergstrom, S., Ryhage, R., Samuelsson, B., and Sjovall, J., 1963, The structures of prostaglandin E(1), F(1-alpha) and F(1-beta), J. Biol. Chem. 238:3555.Google Scholar
  14. Blaquier, P., Bohr, D. F., and Hoobler, S. W., 1960, Evidence against an increase in circulating pressor material in renal hypertensive rats. Am. J. Physiol. 198:1148.Google Scholar
  15. Bradley, S. E., Bradley, G. P., Tyson, C. J., Curry, J. J., and Blake, W. D., 1950, Renal function in renal diseases, Am. J. Med. 9:766.PubMedCrossRefGoogle Scholar
  16. Braun-Menendez, E., and von Euler, U. S., 1947, Hypertension after bilateral nephrectomy in the rat, Nature (London) 160:905.CrossRefGoogle Scholar
  17. Brenner, B. M., Falchuk, K. H., Keimowitz, R. I., Berliner, R. W., 1969, Relationship between peritubular capillary protein and fluid reabsorption by the renal proximal tubule, J. Clin. Invest. 48:1519.PubMedCrossRefGoogle Scholar
  18. Bricker, N. S., Klahr, S., Purkerson, M., 1968, In vitro assay for a humoral substance present during volume expansion and uremia. Nature 219:1058.PubMedCrossRefGoogle Scholar
  19. Buckalew, V. M., Jr., Martinez, F. J., and Green, W. E., 1970, Effect of dialystates and ultrafiltrates of plasma of saline-loaded dogs on toad bladder sodium transport, J. Clin. Invest. 49:929.Google Scholar
  20. Carr, A. A., 1970, Hemodynamic and renal effects of a prostaglandin, PGA(1), in subjects with essential hypertension, Am. J. Med. Sci. 259:21.PubMedCrossRefGoogle Scholar
  21. Covino, B. G., Lee, J. B., and McMorrow, J. V., 1968, Circulatory effects of prostaglandins. Circulation 38: (Suppl. VI):60A.Google Scholar
  22. Daniels, E. G., and Pike, J. E., 1968, Isolation of prostaglandins. In: Prost. Symp. Wore. Found. Exper. Biol., (P. W. Ramwell and J. E. Shaw, Eds.), Interscience Publishers, New York, p. 379.Google Scholar
  23. Davis, R. P., 1964, Glycolytic Pathways and Cation Transport, In: Renal Metabolism and Epidemiology of Some Renal Diseases, Proc. 15th Ann. Conf. on the Kidney, Jack Metcoff, M. D., Ed. p. 114.Google Scholar
  24. Deetjen, P., and Kramer, K., 1961, Abhangigkeit des O2-Verbrauchs der Niere von der Na-Ruckresorption, Pflugers Arch. Ges. Physiol. 273:636.CrossRefGoogle Scholar
  25. Detfardener, H. E., Mills, I. M., Clapham, W. F., and Hayter, C. J., 1961, Studies on the efferent mechanism of sodium diuresis which follows the administration of intravenous saline in the dog, Clin. Sci. 21:249.Google Scholar
  26. Dunham, E. W., and Zimmerman, B. G., 1970, Release of prostaglandin-like material from dog kidney during nerve stimulation, Am. J. Physiol. 219: 1279.PubMedGoogle Scholar
  27. Earley, L. E., and Friedler, R. M., 1965, Studies on the mechanism of natriuresis accompanying increased renal blood flow and its role in the renal response to extracellular volume expansion, J. Clin. Invest. 44: 1857.PubMedCrossRefGoogle Scholar
  28. Earley, L. E., and Friedler, R. M., 1966, The effects of combined renal vasodilation and pressor agents on renal hemodynamics and the tubular reabsorption of Na, J. Clin. Invest. 45:542.PubMedCrossRefGoogle Scholar
  29. Fasciolo, J. C., 1938, Accion del rinon sano sobre la hipertension arteriol por isqemia renal, Rev. Soc. Argent. Biol. 14:15.Google Scholar
  30. Goldblatt, M. W., 1953, Depressor substance in seminal fluid, Chenu Ind. 52:1056.Google Scholar
  31. Gomez, D. M., 1951, Evaluation of renal resistance with special reference to changes in essential hypertension, J. Clin. Invest. 30:1143.PubMedCrossRefGoogle Scholar
  32. Gomez, A. H., Hoobler, S. W., and Blaquier, P., 1960, Effect of addition and removal of kidney transplant in renal and adrenocortical hypertensive rats, Circ. Res. 8:464.PubMedGoogle Scholar
  33. Grantham, J. J., and Orloff, J., 1968, Effect of prostaglandin E(1) on the permeability response of the isolated collecting tubule to vasopressin, adenosine 3′, 5′-monophosphate and theophylline, J. Clin. Invest. 47:1154.PubMedCrossRefGoogle Scholar
  34. Grollman, A., Williams, J. R., Jr., and Harrison, T. R., 1940, Reduction of elevated blood pressure by administration of renal extract, J. A. M. A. 115:1169.CrossRefGoogle Scholar
  35. Grollman, A., Muirhead, E. E., and Vanatta, J., 1949, Role of the kidney in pathogenesis of hypertension as determined by a study of the effects of bilateral nephrectomy and other experimental procedures on the blood pressure of the dog, Am. J. Physiol. 157:21.PubMedGoogle Scholar
  36. Guyton, A. C., and Coleman, T. G., 1969, Quantitative analysis of the pathophysiology of hypertension, Circ. Res. 24: (Suppl. I):I–1.Google Scholar
  37. Hamburg, M., 1969, Biosynthesis of prostaglandins in the renal medulla of rabbit, FEBS Letters 5:127.CrossRefGoogle Scholar
  38. Hamberg, M., and Samuelsson, B., 1966, Prostaglandins in human seminal plasma, J. Biol. Chenu 241:257.Google Scholar
  39. Hamilton, J. G., and Grollman, A., 1958, The preparation of renal extracts effective in reducing blood pressure in experimental hypertension, J. Biol. Chem. 233:528.PubMedGoogle Scholar
  40. Hauge, A., Lunde, P. K. M., and Waaler, B. S., 1967, Effects of prostaglandin E(1) and adrenaline on the pulmonary vascular resistance (PVR) in isolated rabbit lungs, Life sciences 6:673.PubMedCrossRefGoogle Scholar
  41. Hendler, E. K., Toretti, J., Weinstein, E., and Epstein, F. H., 1969, Functional significance of the distribution of Na-K ATPase within the kidney, J. Clin. Invest. 48:37a.Google Scholar
  42. Hickler, R. B., Lauler, D. P., Saravis, C A., Vagnucci, A. I., Steiner, G., and Thorn, G. W., 1964, Vasodepressor lipid from the renal medulla. Can. Med. Assoc. J. 90:280.PubMedGoogle Scholar
  43. Holmes, S. W., Horton, E. W., and Main, I. H. M., 1963, The effect of prostaglandin E(1) on responses of smooth muscle to catecholamines, angiotensin and vasopressin, Brit. J. Pharm. 21:528.Google Scholar
  44. Horton, E. W., 1963, Action of prostaglandin E(1) on tissues which respond to bradykinin. Nature 200:892.PubMedCrossRefGoogle Scholar
  45. Hume, D. M., Merrill, J. P., Miller, B. F., and Thorn, G., 1955, Experiences with renal homotransplantation in the human: Report of nine cases, J. Clin, Invest. 34:327.CrossRefGoogle Scholar
  46. Ishii, M., and Tobian, L., 1969, Interstitial cell granules in renal papilla and the solute composition of renal tissue in rats with Goldblatt hypertension, J. Lab. Clin, Med. 14:47.Google Scholar
  47. Johnston, H. H., Herzog, J. P., and Lauler, D. P., 1967, Effect of prostaglandin E(1) on renal hemodynamics, sodium and water excretion. Am, J. Physiol, 213:939.Google Scholar
  48. Jones, L. G., and Herd, J. A., 1970, Intrarenal distribution of blood flow during saline diuresis. Fed. Proc. 29:398a.Google Scholar
  49. Jorgenson, P., and Skou, J. C., 1969, Preparation of highly active Na-K ATPase from the outer medulla of rabbit kidney, Biochem, Biophys. Res. Commun. 37:39.CrossRefGoogle Scholar
  50. Radar, D., and Sunahara, F. A., 1969, Inhibition of prostaglandin effects by ouabain in the canine vascular tissue, Can. J. Physiol. Pharm. 47:871.CrossRefGoogle Scholar
  51. Kannegiesser, H., and Lee, J. B., 1971, Difference in haemodynamic response to prostaglandin A and E, Nature 229:314.CrossRefGoogle Scholar
  52. Kean, E. L., Adams, P. H., Winters, R. W., and Daview, R. C., 1961, Energy metabolism of the renal medulla, Biochem. Biophys. Acta 54:474.PubMedCrossRefGoogle Scholar
  53. Kiil, F., Aukland, K., and Refsum, H. E., 1961, Renal sodium transport and oxygen consumption, Am. J. Physiol. 201:511.PubMedGoogle Scholar
  54. Koletsky, S., and Pritchard, W. H., 1963, Vasopressor material in experimental renal hypertension, Circ. Res. 13:552.PubMedGoogle Scholar
  55. Kolff, W. J., and Page, I. H., 1954, Blood pressure reducing function of the kidney; reduction of renoprival hypertension by kidney perfusion, Am. J. Physiol. 178:75.PubMedGoogle Scholar
  56. Kolff, W. J., Nakamoto, S., Poutasse, E. F., Straffon, R. A., and Figueroa, J. E., 1964, Effect of bilateral nephrectomy and kidney transplantation on hypertension in man. Circulation 30: (Suppl. II):23.PubMedGoogle Scholar
  57. Krebs, H. A., 1935, Metabolism of amino acids: III. Deamination of amino acids. Biochem. J. 29:1620.PubMedGoogle Scholar
  58. Lee, J. B., 1967, Chemical and physiological properties of renal prostaglandins with emphasis on the cardiovascular effects of medullin in essential human hypertension, In: Prostaglandin II Nobel Symposium, (S. Bergstrom and B. Samuelsson, Eds.), Stockholm, Almqvist and Wicksell; New York, Interscience, p. 197.Google Scholar
  59. Lee, J. B., 1968, Cardivascular implications of the renal prostaglandins. In: Prostaglandin, Symp. Worc. Found. Expt’l. Biol., Wiley, p. 131.Google Scholar
  60. Lee, J. B., 1970, Prostaglandins, The Physiologist, 13:379.Google Scholar
  61. Lee, J. B., Hickler, R. B., Saravis, C. A., and Thorn, G. W., 1962a, Sustained depressor effect of renal medullary extract in the normotensive rat. Circulation 26:747, Part II.Google Scholar
  62. Lee, J. B., Vance, V. K., and Cahill, G. F., Jr., 1962b, Metabolism of C-14 labelled substrates by rabbit kidney cortex and medulla. Am. J. Physiol. 203:27.PubMedGoogle Scholar
  63. Lee, J. B., Hickler, R. B., Saravis, C A., and Thorn, G. W., 1963, Sustained depressor effects of renal medullary extract in the normotensive rat, Circ. Res. 13:359.PubMedGoogle Scholar
  64. Lee, J. B., Mazzeo, M. A., and Takman, B. H., 1964a, The acidic lipid characteristics of sustained rencmedullary depressor activity, Clin. Res. 12:254.Google Scholar
  65. Lee, J. B., Takman, B. H., and Covino, B. G., 1964b, The isolation and chemical characteristics of renomedullary depressor substances. The Physiologist 7:188.Google Scholar
  66. Lee, J. B., Covino, B. G., Takman, B. H., and Smith, E. R., 1965, Remomedullary vasodepressor substance, Medullin: Isolation, chemical characterization and physiological properties, Circ. Res. 7:57.Google Scholar
  67. Lee, J. B., Gougoutas, J. Z., Takman, B. H., Caniels, E. G., Grostic, M. F., Pike, J. E., Hinman, J. W., and Muirhead, E. E., 1966, Vasodepressor and antihypertensive prostaglandins of PGE type with emphasis on the identification of medullin as PGE (2)-217, J. Clin. Invest. 45:1036.Google Scholar
  68. Lee, J. S., Crowshaw, K., Takman, B. H., and Gougoutas, J. Z., 1967, The identification of PGE(2), PGF(2-alpha), and PGA(2) from rabbit kidney medulla, Biochem. J. 105:1251.PubMedGoogle Scholar
  69. Lee, J. B., and Ferguson, J. F., 1969, The effect of renal prostaglandin on PAH uptake by kidney cortex, Nature 222:1185.PubMedCrossRefGoogle Scholar
  70. Lee, J. B., and Peter, H. M., 1969, The effect of oxygen tension on glucose metabolism in rabbit kidney cortex and medulla. Am. J. Physiol. 217:464.Google Scholar
  71. Lee, J. B., Kannegiesser, H., O’Toole, D., and Westura, E. E., 1971a, Hypertension and the renomedullary prostaglandins: A human study of the antihypertensive effects of PGA(1), Ann. N. Y. Acad. Sciences, 180:218.CrossRefGoogle Scholar
  72. Lee, J. B., McGiff, J. C., Kannegiesser, H., Aykent, Y. Y., Mudd, J. G., and Frawley, T. F., 1971b, Antihypertensive renal effects of prostaglandin A(1) in patients with essential hypertension, Ann. Int. Med. 74:703.PubMedGoogle Scholar
  73. Martinez-Maldonado, M., Allen, J. C., Knoyan, G. W., Suki, W., and Schwartz, A., 1969, Renal concentrating mechanism: Possible role for sodium potassium activated adenosine triphosphatase. Science 165:807.PubMedCrossRefGoogle Scholar
  74. McGiff, J. C., Terragno, N. A., Strand, J. C., Lee, J. B., Lonigro, A. J., and Ng, K. K. F., 1969, selective passage of PG’s across the lung. Nature 223:742.PubMedCrossRefGoogle Scholar
  75. McGiff, J. C., Crowshaw, K., Terragno, N. A., Lonigro, A. J., 1970a, Renal prostaglandins: Possible regulators of the renal actions of pressor hormones, Nature 227:1255.PubMedCrossRefGoogle Scholar
  76. McGiff, J. C., Crowshaw, K., Terragno, N. A., Lonigro, A. J., Strand, J. C., Sr., Williamson, M. A., Lee, J. B., and Ng, K. K. F., 1970b, Prostaglandin-like substances appearing in canine renal venous blood during renal ischemia: Their partial characterization by pharmacologic and chromatographic procedures, Circ. Res. 22:765, 1970.Google Scholar
  77. Muehrcke, R. C., Mandai, A. K., Epstein, M., and Volini, F. E., 1969, Cytoplasmic granularity of the renal medullary interstitial cells in experimental hypertension, J. Lab. Clin. Med. 73:299.PubMedGoogle Scholar
  78. Muirhead, E. E., Stirman, J. A., Lesch, W., and Jones, F., 1956, The reduction of postnephrectomy hypertension by renal homotransplant, Surg., Gynec. Obst. 103:673.Google Scholar
  79. Muirhead, E. E., Jones, F., and Stirman, J. A., 1960, Antihypertensive property in renoprival hypertension of extract from renal medulla, J. Lab. Clin. Med. 56:167.PubMedGoogle Scholar
  80. Muirhead, E. E., Brown, G. B., Germain, G. S., and Leach, B. E., 1970, The renal medulla as an antihypertensive organ, J. Lab. Clin. 76:641.Google Scholar
  81. Nakano, J., 1968, Effects of prostaglandins E(1), A(1) and F(2-alpha) on the coronary and peripheral circulations, Proc. Soc. Exper. Biol. Med. 127:1160.Google Scholar
  82. Nakano, J., and McCurdy, J. R., 1967, Cardiovascular effects of prostaglandin E(1), J. Pharm. Exp. Therap. 156:538.Google Scholar
  83. Nakano, J., and McCurdy, J. R., 1968, Hemodynamic effects of prostaglandins E(1), A(1), and F(2-alpha) in dogs, Proc. Soc. Exper. Biol. Med., 128:39.Google Scholar
  84. Nissen, H. M., and Bojesen, I., 1969, On lipid droplets in renal interstitial cells, IV. Isolation and identification, Z. Zeilforsch. 97:274.CrossRefGoogle Scholar
  85. Page, I. H., Helmer, O. M., Kohlstaedt, K. G., Kempf, G. F., Gambill, W. D., and Taylor, R. D., 1941, The blood pressure reducing property of extracts of kidneys in hypertensive patients and animals, Ann. Int. Med. 15:347.Google Scholar
  86. Sealey, J. E., and Laragh, J. H., 1971, Further studies of a natriuretic substance occurring in human urine and plasma, Circ. Res. 28: (Suppl. II):32.PubMedGoogle Scholar
  87. Smith, E. R., McMorrow, J. V., Covino, B. G., and Lee, J. B., 1968, Studies on the vasodilator action of prostaglandin E(1), In: Prost. Symp. Worc. Found. Exper. Biol., (P. W. Ramwell and J. E. Shaw, Eds.), Interscience Publishers, New York, p. 259.Google Scholar
  88. Solomon, L. M., Juhlin, L., and Kirschenbaum, M. B., 1968, Prostaglandin on cutaneous vasculature, J. Invest. Derm. 51:2 80.Google Scholar
  89. Strong, C. G., and Bohr, D. F., 1967, Effects of prostaglandins E(1), E (2), A(1), and F(1-alpha) on isolated vascular smooth muscle, Am. J. Physiol. 213:725.PubMedGoogle Scholar
  90. Thurau, K., 1961, Renal Na-reabsorption and oxygen-uptake in dogs during hypoxia and hydrochlorothiazide infusion, Proc. Soc. Exper. Biol. Med. 106:714.Google Scholar
  91. Thurau, K., 1964, Renal hemodynamics. Am. J. Med. 36:698.PubMedCrossRefGoogle Scholar
  92. Tobian, L., Ishii, M., and Duke, M., 1969, Relationship of cytoplasmic granules in renal papillary interstitial cells to “postsalt” hypertension, J. Lab. Clin. Med. 73:309.PubMedGoogle Scholar
  93. von Euler, U. S., 1934, Zur Kenntnis der pharmakologischen Wirkungen von nativsekreten und extrakten mannlicher accessorischer Geschlectsdrusen, Arch. Exptl. Pathol. Pharmakol. 175:76.CrossRefGoogle Scholar
  94. von Euler, U. S., 1935, Uber die spezifische blutdrucksenke Substanz des menschlichen Prostata und Samenglasenkretes, Klin. Wochschr. 14:1182.CrossRefGoogle Scholar
  95. von Euler, U. W., 1936, On the specific vasodilating and plain muscle stimulating substances from accessory genital glands in man and certain animals (prostaglandin and vesiglandin), J. Physiol. 81:65.Google Scholar
  96. Warburg, O., 1927, Uber die Klassifizierung eierischer gewebe nach ihrem Stoffwechsel, Biochem. Ztschr. 184:484.Google Scholar
  97. Weiner, R., and Kaley, G., 1969, Influence of prostaglandin E(1) on the terminal vascular bed, Am. J. Physiol. 217:563.PubMedGoogle Scholar
  98. Westura, E. E., Kannegiesser, H., O’Toole, J. D., and Lee, J. B., 1970, Antihypertensive effects of prostaglandin A(1) in essential hypertension, Circ. Res. 27: (Suppl. I): 131.PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1972

Authors and Affiliations

  • J. B. Lee
    • 1
  1. 1.State Univ. of New York, Buffalo School of Med.Buffalo General HospitalBuffaloUSA

Personalised recommendations