Phylogenetic Aspects of Immunoglobulin Variable Region Diversity

  • J. Michael Kehoe
  • J. Donald Capra


There is now widespread agreement that the antigen-binding function of immunoglobulin molecules is mediated by the variable regions of their heavy and light polypeptide chains. Studies from a number of laboratories have shown that many general features of antibodies, such as the capacity to interact with a given antigen (e.g., dinitrophenyl), susceptibility to proteolytic cleavage, and mediation of biological properties (e.g., complement fixation), are shared across a wide phylogenetic spectrum of animal species. From a broad biological standpoint, an important question arises. To what extent do these various animal species produce similar immunoglobulin proteins to fulfill the functional requirements of the humoral response system? One approach to answering this question is to study the molecular products of the humoral response in a wide variety of species, especially including amino acid sequence analyses. Unfortunately, such studies have been impeded by the difficulty of obtaining sufficient quantities of pure material from the different species, in large part because of the restriction of the availability, until recently, of homogeneous myeloma proteins to man and the mouse. However, the discovery and sequence analysis of myeloma proteins from dogs and cats (Kehoe and Capra, 1972), progress in amino acid sequence studies of murine myeloma proteins (Bourgois and Fougereau, 1970; Hood and Talmage, 1970; Rudikoff et al., 1973), the recent discovery of myeloma proteins in rats (Bazin et al., 1972; Querinjean et al., 1974), and the remarkable complete sequence analyses performed by Cebra et al. (1971) on pools of immunoglobulins from inbred guinea pigs has considerably widened the scope of the available sequence data on the characteristics of antibody proteins from various species.


Heavy Chain Myeloma Protein Heavy Chain Variable Region Human Myeloma Protein 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bazin, H., Deckers, C., Beckers, A., and Heremans, J. F., 1972, Int. J. Cancer 10:568. Bourgois, A., and Fougereau, M., 1970, FEBS Letters 8: 265.Google Scholar
  2. Capra, J. D., 1971, Nature New Biology 230: 61.PubMedGoogle Scholar
  3. Capra, J. D., and Kehoe, J. M., 1973, Proc. Natl. Acad. Sci. U.S., 71: 845.CrossRefGoogle Scholar
  4. Capra, J. D., Chuang, C., Kaplan, R. D., and Kehoe, J. M., 1973a, IgA Symposium, Birmingham, Alabama.Google Scholar
  5. Capra, J. D., Wasserman, R. L., and Kehoe, J. M., 1973b, J. Exp. Med. 138: 410.PubMedCrossRefGoogle Scholar
  6. Cebra, J. J., Ray, A., Benjamin, D., and Birshstein, B., 1971, in Amos, B. (ed.) Progress in Immunology, Academic Press, New York, pp. 269–284.Google Scholar
  7. Cunningham, B. A., Pflumm, M. N., Rutishauser, U., and Edelman, G. M., 1969, Proc. Natl. Acad. Sci. U.S. 64: 997.CrossRefGoogle Scholar
  8. Hilschmann, N., and Craig, L. C., 1965, Proc. Natl. Acad. Sci. U.S. 53: 1403.CrossRefGoogle Scholar
  9. Hood, L., and Talmage, D. W., 1970, Science 168: 325.PubMedCrossRefGoogle Scholar
  10. Kabat, E. A., and Wu, T. T., 1971, Ann. N.Y. Acad. Sci. 190: 382.PubMedCrossRefGoogle Scholar
  11. Kehoe, J. M., and Capra, J. D., 1971, Proc. Natl. Acad. Set U.S. 68: 2019.CrossRefGoogle Scholar
  12. Kehoe, J. M., and Capra, J. D., 1972, Proc. Natl. Acad. Sci. U.S. 69: 2052.CrossRefGoogle Scholar
  13. Kehoe, J. M., Bourgois, A., Capra, J. D., and Fougereau, M., 1973, Biochemistry,in press. Kohler, H., Shimizu, A., Paul, C., Moore, V., and Putnam, F. W., 1970, Nature 227:1318.Google Scholar
  14. Kubo, R. T., Rosenblum, I. Y., and Benedict, A. A., 1971, J. Immunol. 107: 1781.Google Scholar
  15. Milstein, C., 1967,Nature (Loud.) 216:330.Google Scholar
  16. Mole, L. E., Jackson, S. A., Porter, R. R., and Wilkinson, J. M., 1971, Biochem. J. 124: 301.PubMedGoogle Scholar
  17. Pink, J. R. L., Buttery, S. H., De Vries, G. M., and Milstein, C., 1970, Biochem. J. 177: 33.Google Scholar
  18. Ponstingl, H., Schwarz, J., Reichel, W., and Hilschmann, N., 1970. Hoppe-Seyler’s Z. Physiol. Chem. 351: 1591.PubMedGoogle Scholar
  19. Potter, M., 1972,Physiol. Rev. 52:631.Google Scholar
  20. Potter, M., and Boyce, C., 1962, Nature 193: 1086.PubMedCrossRefGoogle Scholar
  21. Querinjean, P. J., Bazin, H., Beckers, A., Kehoe, J. M., Schulman, J., and Capra, J. D., 1974, Fed. Proc. (abs.) 33:809.Google Scholar
  22. Rudikoff, S., Mushinski, E. B., Potter, M., Glaudemans, C. P., and Jolley, M. E., 1973, J. Exp. Med. 138: 1095.PubMedCrossRefGoogle Scholar
  23. Sledge, C., Clem, L. W., and Hood, L., 1974, J. Immunol., 112: 941.PubMedGoogle Scholar
  24. Wang, A. C., Fudenberg, H. H., and Pink, J. R. L., 1971, Proc. Natl. Acad. Sci. U.S. 68: 1143.CrossRefGoogle Scholar
  25. Wasserman, R. L., Kehoe, J. M., and Capra, J. D., 1974, Fed. Proc. (abs.) 33:809.Google Scholar
  26. Wilkinson, J. M., 1969, Biochem. J. 112: 173.PubMedGoogle Scholar
  27. Wu, T. T., and Kabat, E. A., 1970, J. Exp. Med. 132: 211.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1974

Authors and Affiliations

  • J. Michael Kehoe
    • 1
  • J. Donald Capra
    • 1
  1. 1.Department of Microbiology, Mount Sinai School of MedicineCity University of New YorkNew YorkUSA

Personalised recommendations