Advertisement

mRNA for H and L Chains of Immunoglobulin: Specific Control of H-Chain Production

  • R. H. Stevens
  • A. R. Williamson

Abstract

Messenger RNA (mRNA) was postulated to exist in prokaryotic systems by Jacob and Monod (1961) on the basis of genetic evidence. Extensive studies since that time have proven the universality of the transfer of information from DNA to a messenger RNA which is then translated to give protein. In prokaryotic systems there is a direct coupling of the transcription of the genes into RNA to the translation of that RNA into protein. This elegant and simple coupling provides a regulatory mechanism at several defined stages of protein synthesis. Regulation occurs notably at the level of transcription, via repressor proteins binding directly to the DNA (Ptashne, 1967; Gilbert and Müller-Hill, 1967). It is clear that eukaryotic cells provide more potential sites for control of protein synthesis. The flow of information from the gene (Fig. 1) can be regulated at the following levels: (a) selection of the appropriate genes to be transcribed, (b) processing within the nucleus of the primary RNA transcript, (c) transport of the processed messenger RNA from the nucleus to the cytoplasm, and (d) control of the translation of mRNA in the cytoplasm. Prokaryotic mRNA appears to be an ephemeral species which may never exist as a completed molecule since its degradation can start before its completion. By contrast, mRNA in eukaryotic cells is a long-lived species. Following a brief existence in the nucleus in the form of a precursor RNA molecule, functional mRNA is transported to the cytoplasm, where it has a lifetime ranging from hours to days (Greenberg, 1972). During the long lifetime of mRNA in the cytoplasm there is ample scope for variation in the rate of translation.

Keywords

Myeloma Cell Specific Control mRNA Molecule Myeloma Protein Mouse Myeloma Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adler, K., Beyreuther, E., Fanning, E., Geisler, N., Gronenborn, B., Klemm, A., Müller-Hill, B., Pfahl, M., and Schmitz, A., 1972, Nature 237: 322.PubMedCrossRefGoogle Scholar
  2. Aloni, Y., 1973, Nature New Biol. 243: 2.PubMedGoogle Scholar
  3. Bevan, M. J., Parkhouse, R. M. E., Williamson, A. R., and Askonas, B. A., 1972 Progr. Biophys. Mol. Biol. 25: 131.CrossRefGoogle Scholar
  4. Blobel, G., 1972, Biochem. Biophys. Res. Comm. 47: 88.PubMedCrossRefGoogle Scholar
  5. Brownlee, G. G., Harrison, T. M., Mathews, M. B., and Milstein, C., 1972, FEBS Lett. 23: 244.PubMedCrossRefGoogle Scholar
  6. Chadwick, P., Pirrotta, V., Steinberg, R., Hopkins, N., and Ptashne, M., 1970, Cold Spring Harbor Symp. Quant. Biol. 34: 283.CrossRefGoogle Scholar
  7. Darnell, J., Wall, R., and Tushinski, R., 1971, Proc. Nat. Acad. Sci. US 68: 1321.CrossRefGoogle Scholar
  8. Dayhoff, M. O., 1969, The Atlas of Protein Sequence and Structures, Vol. 4, National Biomedical Research Foundation, Silver Spring, Md.Google Scholar
  9. Delovitch, T. L., and Baglioni, C., 1973, Proc. Nat. Acad. Sci. US 70: 173.CrossRefGoogle Scholar
  10. Delovitch, T. L., David, B. K., Holme, G., and Sehon, A. J., 1972, J. Mol. Biol. 69: 373.PubMedCrossRefGoogle Scholar
  11. Delovitch, T. L., Boyd, S. L., Tsay, H. M., Holme, G., and Sehon, A. J., 1973, Biochim. Biophys. Acta 299: 621.PubMedGoogle Scholar
  12. Edmonds, M., Vaughan, M. J., and Nakazato, H., 1971, Proc. Nat. Acad. Sci. US 68: 1336.CrossRefGoogle Scholar
  13. Fan, H., and Penman, S., 1970, J. Mol. Biol. 50: 655.PubMedCrossRefGoogle Scholar
  14. Gilbert, M., and Müller-Hill, B., 1967, Proc. Nat. Acad. Sci. US 58: 2415.CrossRefGoogle Scholar
  15. Greenberg, J. R., 1972,Nature 240: 102.PubMedCrossRefGoogle Scholar
  16. Gurdon, J Lane, C., Woodland, H., and Marbaix, G., 1971, Nature 233: 177.PubMedCrossRefGoogle Scholar
  17. Hunt, T., Hunter, T., and Munro, A., 1969, J. Mol. Biol. 43: 123.PubMedCrossRefGoogle Scholar
  18. Jacob, F., and Monod, J., 1961, J. Mol. Biol. 3: 318.PubMedCrossRefGoogle Scholar
  19. Jelinek, W., Adesnik, M., Salditt, M., Sheiness, D., Wall, R., Molloy, G., Philipson, L., and Darnell, J. E., 1973, J. Mol. Biol. 73: 515.Google Scholar
  20. Kozak, M., and Nathans, D., 1972, Bacteriol. Rev. 36: 109.PubMedGoogle Scholar
  21. Kwan, S., and Brawerman, G., 1972, Proc. Nat. Acad. Sci. US 69: 3247.CrossRefGoogle Scholar
  22. Lane, C. D., Marbaix, G., and Gurdon, J. B., 1971, J. Mol. Biol. 61: 73.PubMedCrossRefGoogle Scholar
  23. Lee, S., Mendecki, J., and Brawerman, G., 1971, Proc. Nat. Acad. Sci. US 68: 1331.CrossRefGoogle Scholar
  24. Lodish, H., 1971, J. Biol. Chem. 246: 7131.Google Scholar
  25. Mach, B., Faust, C. H., and Vassalli, P., 1973, Proc. Nat. Acad. Sci. US 70: 451.CrossRefGoogle Scholar
  26. Melli, M., and Pemberton, R., 1972, Nature New Biol. 236: 172.PubMedCrossRefGoogle Scholar
  27. Mendecki, J., Lee, Y., and Brawerman, G., 1972, Biochemistry 11: 792.PubMedCrossRefGoogle Scholar
  28. Milstein, C., Brownlee, G. G., Harrison, T. M., and Mathews, M. B., 1972, Nature New Biol. 239: 117.PubMedCrossRefGoogle Scholar
  29. Min Jou, W., Haegeman, M., Ysebaert, T., and Fiers,W., 1972, Nature 237: 82.CrossRefGoogle Scholar
  30. Molloy, G., Sporn, M. B., Kelley, D. E., and Perry, R. P., 1972, Biochemistry 11: 3256.Google Scholar
  31. Morel, C., Kayibanda, B., and Scherrer, K., 1971, FEBS Lett. 18: 84.PubMedCrossRefGoogle Scholar
  32. Palmiter, R., 1972, J. Biol. Chem. 247: 6770.Google Scholar
  33. Penman, S., Vesco, C., and Penman, M., 1968, J. Mol. Biol. 34: 49.PubMedCrossRefGoogle Scholar
  34. Premkumar, E., Stevens, R. H., and Williamson, A. R., 1973, in preparation.Google Scholar
  35. Ptashne, M., 1967, Nature 214: 232.PubMedCrossRefGoogle Scholar
  36. Ralph, P., and Rich, A., 1971, Biochemistry 10: 4717.PubMedCrossRefGoogle Scholar
  37. Riggs, A. D., Suzuki, H., and Bourgeois, S., 1970a, J. Mol. Biol. 48: 67.PubMedCrossRefGoogle Scholar
  38. Riggs, A. D., Bourgeois, S. and Cohn, M., 1970b, J. Mol. Biol. 53: 401.PubMedCrossRefGoogle Scholar
  39. Shimizu, A., Paul, C., Köhler, H., Shinoda, T., and Putnam, F. W., 1971, Science 173: 629.PubMedCrossRefGoogle Scholar
  40. Soeiro, R., Vaughan, M. H., and Darnell, J. E., 1968, J. Cell Biol. 39: 112.PubMedCrossRefGoogle Scholar
  41. Stavnezer, J., and Huang, R-C. C., 1971 Nature New Biol. 230: 172.PubMedCrossRefGoogle Scholar
  42. Stevens, R. H., 1973, Europ. J. Biochem. 42: 553.CrossRefGoogle Scholar
  43. Stevens, R. H., and Williamson, A. R., 1972 Nature 239: 143.PubMedCrossRefGoogle Scholar
  44. Stevens, R. H., and Williamson, A. R., 1973a Proc. Nat. Acad. Sci. US 70: 1127.CrossRefGoogle Scholar
  45. Stevens, R. H., and Williamson, A. R., 1973b, J. Mol. Biol. 78: 505.PubMedCrossRefGoogle Scholar
  46. Stevens, R. H., and Williamson, A. R., 1973c, J. Mol. Biol. 78: 516.Google Scholar
  47. Sugiyama, T., 1969, Cold Spring Harbor Symp. Quant. Biol. 34: 687.PubMedCrossRefGoogle Scholar
  48. Suzuki, Y., and Brown, D., 1972, J. Mol. Biol. 63: 409.PubMedCrossRefGoogle Scholar
  49. Suzuki, Y., Gage, L., and Brown, D., 1972, J. Mol. Biol. 70: 637.PubMedCrossRefGoogle Scholar
  50. Swan, D., Aviv, H., and Leder, P., 1972, Proc. Nat. Acad. Sci. US 69: 1967.CrossRefGoogle Scholar
  51. Tonegawa, S., and Baldi, I., 1973, Biochem. Biophys. Res. Commun. 51: 81.PubMedCrossRefGoogle Scholar
  52. Vassalli, P., Lisowska-Bernstein, B., and Lamm, M. E., 1971, J. Mol. Biol. 56: 1.PubMedCrossRefGoogle Scholar
  53. Wall, R., and Darnell, J. E., 1971, Nature New Biol. 232: 73.PubMedCrossRefGoogle Scholar
  54. Wall, R., and Darnell, J. E., 1971, Nature New Biol. 232: 73.PubMedCrossRefGoogle Scholar
  55. Williamson, A. R., and Askonas, B. A., 1967, J. Mol. Biol. 23: 201.PubMedCrossRefGoogle Scholar
  56. Williamson, R., Drewienkiewicz, C. E., and Paul, J., 1973 Nature New Biol. 241: 66. PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1974

Authors and Affiliations

  • R. H. Stevens
    • 1
  • A. R. Williamson
    • 2
  1. 1.Division of BiochemistryNational Institute for Medical ResearchLondonEngland
  2. 2.Department of Microbiology and ImmunologyUniversity of CaliforniaLos AngelesUSA

Personalised recommendations