Platelet Lipids

  • Daniel Deykin
Part of the Monographs in Lipid Research book series (MLR)


Platelets are capable of synthesizing complex lipids from acetate, glycerol, and from preformed fatty acids. In addition alterations in lipid metabolism and in the orientation of lipids in membranes are integral to normal function. Furthermore, abnormalities of lipid metabolism and composition have been associated with altered platelet function. Therefore, platelets are attractive for the study of the role of lipids in cellular function.


Arachidonic Acid Platelet Function Human Platelet Phosphatidic Acid Complex Lipid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bennett, J. S., Shattil, S. J., Cooper, R. A., and Colman, R. W. 1974. Platelet hypersensitivity in familial hyperbetalipoproteinemia: The role of platelet lipid composition. Blood 44:918.Google Scholar
  2. Bjerve, K. S. 1973. The Ca2+-dependent biosynthesis of lecithin, phosphatidylethanolamine, and phosphatidylserine in rat liver subcellular particles. Biochem. Biophys. Acta 296:549–562.PubMedGoogle Scholar
  3. Call, F. L., and Williams, W. J. 1970. Biosynthesis of cytidine diphosphate diglyceride by human platelets.J. Clin. Invest. 49:392–397.PubMedCrossRefGoogle Scholar
  4. Call, F. L., and Rubert, M. 1975. Synthesis of ethanolamine phosphoglycerides by human platelets. J. Lipid Res. 16:352–359.PubMedGoogle Scholar
  5. Carvalho, A. C. A., Colman, R. W., and Lees, R. S. 1974. Platelet function in hyperlipoproteinemia. New Eng. J. Med. 290:434–438.PubMedCrossRefGoogle Scholar
  6. Cohen, P., Derksen, A., and van den Bosch, H. 1970. Pathways of fatty acid metabolism in human platelets. J. Clin. Invest. 49:128–139.PubMedCrossRefGoogle Scholar
  7. Cohen, P., Broekman, M. J., Verkley, A., Lisman, W. W., and Derksen, A. 1971. Quantification of human platelet inositides and the influence of ionic environment on their incorporation of orthophosphate-32P. J. Clin. Invest. 50:762–772.PubMedCrossRefGoogle Scholar
  8. Derksen, A., and Cohen, P. 1973. Extensive incorporation of (2-14C) mevalonic acid into cholesterol precursors by human platelets in vitro. J. Biol. Chem. 248:7396–7403.Google Scholar
  9. Deykin, D. 1971. The sub-cellular distribution of platelet lipids labeled by acetate 1-14C. J. Lipid Res. 12:9–11.PubMedGoogle Scholar
  10. Deykin, D. 1973. Altered lipid metabolism after primary aggregation. J. Clin. Invest. 52:483–492.PubMedCrossRefGoogle Scholar
  11. Deykin, D., and Desser, R. K. 1968. The incorporation of acetate and palmitate into lipids by human platelets.J. Clin. Invest. 47:1590–1602.PubMedCrossRefGoogle Scholar
  12. Deykin, D., and Snyder, D. 1973. The effect of epinephrine on platelet lipid metabolism J. Lab. Clin. Med. 82:554–559.PubMedGoogle Scholar
  13. Eisbach, P., Pettis, P., and Marcus, A. J. 1971. Lysolecithin metabolism by human platelets. Blood 37:675–683.Google Scholar
  14. Hamberg, M., and Samuelsson, B. 1974. Prostaglandin endoperoxides. Novel transformations of arachidonic acid in human platelets. Proc. Natl. Acad. Sci. USA 71:3400–3404.PubMedCrossRefGoogle Scholar
  15. Hamberg, M., Svensson, J., Wykabayaski, T., and Samuelsson, B. 1974a. Isolation and structure of two prostaglandin endoperoxides that cause platelet aggregation. Proc. Natl. Acad. Sci. USA 71:345–349.PubMedCrossRefGoogle Scholar
  16. Hamberg, M., Svensson, J., and Samuelsson, B. 1974b. Prostaglandin endoperoxides. A new concept concerning the mode of action and release of prostaglandins. Proc. Natl. Acad. Sci. USA 71:3824–3828.PubMedCrossRefGoogle Scholar
  17. Hamberg, M., Svensson, J., and Samuelsson, B. 1975. Thromboxanes: A new group of biologically active compounds derived from prostaglandin endoperoxides. Proc. Natl. Acad. Sci. USA 72:2994–2998.PubMedCrossRefGoogle Scholar
  18. Hennes, A. R., Awai, K., Hamerstrand, K., and Duboff, G. 1966. Carbon-14 in carboxyl carbon of fatty acids formed by platelets from normal and diabetic subjects. Nature 210:839–841.PubMedCrossRefGoogle Scholar
  19. Hoak, J. C., Spector, A. A., Fry, G. L., and Barnes, B. C. 1972. Localization of free fatty acids taken up by human platelets. Blood 40:16–22.PubMedGoogle Scholar
  20. Hokin, L. E. 1969. Functional activity in glands and synaptic tissue and the turnover of phosphatidylinositol. Ann. N. Y. Acad. Sci. 165:695.PubMedGoogle Scholar
  21. Hutton, R. A., and Deykin, D. 1973. The effect of ADP on phosphatidylinositol synthesis in normal and storage pool deficient human platelets. Proc. 16th Annual Meeting, Am. Soc. Hematol.: p. 116, Abstr. No. 238.Google Scholar
  22. Kanfer, J. N. 1972. Base exchange reactions of the phosphoinositides in rat brain particles.J. Lipid Res. 13:468–476.PubMedGoogle Scholar
  23. Kloeze, J. 1969. Relationship between chemical structure and platelet aggregation activity of prostaglandins. Biochem. Biophys. Acta 187:285–292.PubMedGoogle Scholar
  24. Krivit, W., and Hammarstron, S. 1972. Identification and quantitation of free ceramides in human platelets. J. Lipid Res. 13:525–530.PubMedGoogle Scholar
  25. Lewis, N., and Majerus, P. W. 1969. Lipid metabolism in human platelets II. De Novo phospholipid synthesis and the effect of thrombin on the pattern of synthesis. J. Clin. Invest. 48:2114–2123.PubMedCrossRefGoogle Scholar
  26. Lloyd, J. V., and Mustard, J. F. 1974. Changes in 32P content of phosphatidic acid and the phosphoinositides of rabbit platelets during aggregation induced by collagen or thrombin. Br. J. Haematol. 16:243–253.CrossRefGoogle Scholar
  27. Lloyd, J. F., Nishizawa, E. E., and Mustard, J. F. 1973. Effect of ADP-induced shape change on incorporation of 32P into platelet phosphatidic acid and mono-, di-, and triphosphati-dylinositol. Br. J. Haematol. 25:77–99.PubMedCrossRefGoogle Scholar
  28. Lucas, C. T., Call, F. L., and Williams, W. J. 1970. The biosynthesis of phosphatidylinositol in human platelets. J. Clin. Invest. 49:1949–1955.PubMedCrossRefGoogle Scholar
  29. Majerus, P. W., Smith, M. B., and Clamon, G. H. 1969. Lipid metabolism in human platelets I. Evidence for a complete fatty acid synthesizing system.J. Clin. Invest. 48:156–164.PubMedCrossRefGoogle Scholar
  30. Malmsten, C., Hamberg, M., Svensson, J., and Samuelsson B. 1975. Physiological role of an endoperoxide in human platelets: Hemostatic defect due to platelet cyclo-oxygenase deficiency. Proc. Natl. Acad. Sci. USA 72:1446–1450.PubMedCrossRefGoogle Scholar
  31. Marcus, A. J., Ullman, H. L., and Safier, L. B. 1969. Lipid composition of subcellular particles of human blood platelets. J. Lipid Res. 10:108–114.PubMedGoogle Scholar
  32. Marcus, A. J., Ullman, H. L., and Safier, L. B. 1972. Studies on human platelet gangliosides.J. Clin. Invest. 51:2602–2612.PubMedCrossRefGoogle Scholar
  33. Marcus, A. J., Safier, L. B., and Ullman, H. L. 1975. Interactions between 5-hydroxytryptamine and platelet lipid fractions, pp. 309–326. In Biochemistry and Pharmacology of Platelets. CIBA Foundation Symposium 35 (New Series) American-Elsevier, N.Y.Google Scholar
  34. Marks, P. A., Gellhorn, A., and Kidson, C. 1960. Lipid synthesis in human leukocytes, platelets, and erythrocytes. J. Biol. Chem. 235:2579–2583.PubMedGoogle Scholar
  35. Okuma, M., Yamashita, S., and Numa S. 1973. Enzymic studies on phosphatidic acid synthesis in human platelets. Blood 41:379–389.PubMedGoogle Scholar
  36. Porcellati, G., Arienti, G., Pirotta, M., and Giorgini, D. 1971. Base-exchange reactions for synthesis of phospholipids in nervous tissue: The incorporation of serine and ethanolamine into the phospholipids of isolated brain microsomes. J. Neurochem. 18:1395–1417.PubMedCrossRefGoogle Scholar
  37. Russell, F. A., and Deykin, D. 1976. The effect of thrombin on the uptake and transformation of arachidonic acid by human platelets. Am. J. Hematol. 1:59–70.PubMedCrossRefGoogle Scholar
  38. Saftit, W., Weiss, H. J., and Phillips, G. 1972. The phospholipid and fatty acid composition of platelets in patients with primary defects of platelet function. Lipids 7:60–67.CrossRefGoogle Scholar
  39. Salzman, E. W., Stead, N., and Deykin, D. 1973. Interrelations of platelet prostaglandin synthesis and cyclic AMP metabolism. IVth International Congress on Thrombosis and Hemostasis, Vienna, p. 78, Abstr. No. 46.Google Scholar
  40. Schick, P. K., and Yu, B. P. 1974. The role of platelet membrane phospholipids in the platelet release reaction. J. Clin. Invest. 54:1032–1039.PubMedCrossRefGoogle Scholar
  41. Shattil, S. J., Anaya-Galindo, R., Bennett, J., Colman, R. W., and Cooper, R. A. 1975. Platelet hypersensitivity induced by cholesterol incorporation. J. Clin. Invest. 55:636–643.PubMedCrossRefGoogle Scholar
  42. Shio, H., and Ramwell, P. W. 1972. Effect of prostaglandin E2 and aspirin on the secondary aggregation of human platelets. Nat. New Biol. 236:45–46.PubMedCrossRefGoogle Scholar
  43. Smith, J. B., and Willis, A. L. 1971. Aspirin selectively inhibits prostaglandin production in human platelets. Nat. New Biol. 231:235–237.PubMedGoogle Scholar
  44. Smith, J. B., Ingerman, C., Kocsis, J. J., and Silver, M. J. 1974. Formation of an intermediate in prostaglandin synthesis and its association with the platelet release reaction. J. Clin. Invest. 53:1468–1472.PubMedCrossRefGoogle Scholar
  45. Snyder, P. D., Desnick, R. S., and Krivit, W. 1972. The glycosphingolipids and glycosyl hydrolases of human blood platelets. Biochem. Biophys. Res. Commun. 46:1857–1865.PubMedCrossRefGoogle Scholar
  46. Spector, A. A., Hoak, J. D., Warner, E. D., and Fry, G. L. 1970. Utilization of long-chain free fatty acids by human platelets. J. Clin. Invest. 49:1489–1496.PubMedCrossRefGoogle Scholar
  47. Turner, S. R., Tainer, J. A., and Lynn, W. S. 1975. Biogenesis of chemotactic molecules by the arachidonate lipoxygenase of platelets. Nature 257:680–681.PubMedCrossRefGoogle Scholar
  48. Willis, A. L. 1974a. En enzymatic mechanism for the antithrombotic and antihemostatic actions of aspirin. Science 183:325–327.PubMedCrossRefGoogle Scholar
  49. Willis, A. L. 1974b. Isolation of a chemical trigger for thrombosis. Prostaglandins 5:1–25.PubMedCrossRefGoogle Scholar
  50. Willis, A. L., and Weiss, H. J. 1973. A congenital defect in platelet prostaglandin production associated with impaired hemostasis in storage pool disease. Prostaglandins 4:783–794.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1977

Authors and Affiliations

  • Daniel Deykin
    • 1
  1. 1.Tufts University Schools of MedicineBoston UniversityBostonUSA

Personalised recommendations