Skip to main content

Platelet Lipids

  • Chapter
Lipid Metabolism in Mammals

Part of the book series: Monographs in Lipid Research ((MLR))

  • 137 Accesses

Abstract

Platelets are capable of synthesizing complex lipids from acetate, glycerol, and from preformed fatty acids. In addition alterations in lipid metabolism and in the orientation of lipids in membranes are integral to normal function. Furthermore, abnormalities of lipid metabolism and composition have been associated with altered platelet function. Therefore, platelets are attractive for the study of the role of lipids in cellular function.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bennett, J. S., Shattil, S. J., Cooper, R. A., and Colman, R. W. 1974. Platelet hypersensitivity in familial hyperbetalipoproteinemia: The role of platelet lipid composition. Blood 44:918.

    Google Scholar 

  • Bjerve, K. S. 1973. The Ca2+-dependent biosynthesis of lecithin, phosphatidylethanolamine, and phosphatidylserine in rat liver subcellular particles. Biochem. Biophys. Acta 296:549–562.

    PubMed  CAS  Google Scholar 

  • Call, F. L., and Williams, W. J. 1970. Biosynthesis of cytidine diphosphate diglyceride by human platelets.J. Clin. Invest. 49:392–397.

    Article  PubMed  CAS  Google Scholar 

  • Call, F. L., and Rubert, M. 1975. Synthesis of ethanolamine phosphoglycerides by human platelets. J. Lipid Res. 16:352–359.

    PubMed  CAS  Google Scholar 

  • Carvalho, A. C. A., Colman, R. W., and Lees, R. S. 1974. Platelet function in hyperlipoproteinemia. New Eng. J. Med. 290:434–438.

    Article  PubMed  CAS  Google Scholar 

  • Cohen, P., Derksen, A., and van den Bosch, H. 1970. Pathways of fatty acid metabolism in human platelets. J. Clin. Invest. 49:128–139.

    Article  PubMed  CAS  Google Scholar 

  • Cohen, P., Broekman, M. J., Verkley, A., Lisman, W. W., and Derksen, A. 1971. Quantification of human platelet inositides and the influence of ionic environment on their incorporation of orthophosphate-32P. J. Clin. Invest. 50:762–772.

    Article  PubMed  CAS  Google Scholar 

  • Derksen, A., and Cohen, P. 1973. Extensive incorporation of (2-14C) mevalonic acid into cholesterol precursors by human platelets in vitro. J. Biol. Chem. 248:7396–7403.

    CAS  Google Scholar 

  • Deykin, D. 1971. The sub-cellular distribution of platelet lipids labeled by acetate 1-14C. J. Lipid Res. 12:9–11.

    PubMed  CAS  Google Scholar 

  • Deykin, D. 1973. Altered lipid metabolism after primary aggregation. J. Clin. Invest. 52:483–492.

    Article  PubMed  CAS  Google Scholar 

  • Deykin, D., and Desser, R. K. 1968. The incorporation of acetate and palmitate into lipids by human platelets.J. Clin. Invest. 47:1590–1602.

    Article  PubMed  CAS  Google Scholar 

  • Deykin, D., and Snyder, D. 1973. The effect of epinephrine on platelet lipid metabolism J. Lab. Clin. Med. 82:554–559.

    PubMed  CAS  Google Scholar 

  • Eisbach, P., Pettis, P., and Marcus, A. J. 1971. Lysolecithin metabolism by human platelets. Blood 37:675–683.

    Google Scholar 

  • Hamberg, M., and Samuelsson, B. 1974. Prostaglandin endoperoxides. Novel transformations of arachidonic acid in human platelets. Proc. Natl. Acad. Sci. USA 71:3400–3404.

    Article  PubMed  CAS  Google Scholar 

  • Hamberg, M., Svensson, J., Wykabayaski, T., and Samuelsson, B. 1974a. Isolation and structure of two prostaglandin endoperoxides that cause platelet aggregation. Proc. Natl. Acad. Sci. USA 71:345–349.

    Article  PubMed  CAS  Google Scholar 

  • Hamberg, M., Svensson, J., and Samuelsson, B. 1974b. Prostaglandin endoperoxides. A new concept concerning the mode of action and release of prostaglandins. Proc. Natl. Acad. Sci. USA 71:3824–3828.

    Article  PubMed  CAS  Google Scholar 

  • Hamberg, M., Svensson, J., and Samuelsson, B. 1975. Thromboxanes: A new group of biologically active compounds derived from prostaglandin endoperoxides. Proc. Natl. Acad. Sci. USA 72:2994–2998.

    Article  PubMed  CAS  Google Scholar 

  • Hennes, A. R., Awai, K., Hamerstrand, K., and Duboff, G. 1966. Carbon-14 in carboxyl carbon of fatty acids formed by platelets from normal and diabetic subjects. Nature 210:839–841.

    Article  PubMed  CAS  Google Scholar 

  • Hoak, J. C., Spector, A. A., Fry, G. L., and Barnes, B. C. 1972. Localization of free fatty acids taken up by human platelets. Blood 40:16–22.

    PubMed  CAS  Google Scholar 

  • Hokin, L. E. 1969. Functional activity in glands and synaptic tissue and the turnover of phosphatidylinositol. Ann. N. Y. Acad. Sci. 165:695.

    PubMed  CAS  Google Scholar 

  • Hutton, R. A., and Deykin, D. 1973. The effect of ADP on phosphatidylinositol synthesis in normal and storage pool deficient human platelets. Proc. 16th Annual Meeting, Am. Soc. Hematol.: p. 116, Abstr. No. 238.

    Google Scholar 

  • Kanfer, J. N. 1972. Base exchange reactions of the phosphoinositides in rat brain particles.J. Lipid Res. 13:468–476.

    PubMed  CAS  Google Scholar 

  • Kloeze, J. 1969. Relationship between chemical structure and platelet aggregation activity of prostaglandins. Biochem. Biophys. Acta 187:285–292.

    PubMed  CAS  Google Scholar 

  • Krivit, W., and Hammarstron, S. 1972. Identification and quantitation of free ceramides in human platelets. J. Lipid Res. 13:525–530.

    PubMed  CAS  Google Scholar 

  • Lewis, N., and Majerus, P. W. 1969. Lipid metabolism in human platelets II. De Novo phospholipid synthesis and the effect of thrombin on the pattern of synthesis. J. Clin. Invest. 48:2114–2123.

    Article  PubMed  CAS  Google Scholar 

  • Lloyd, J. V., and Mustard, J. F. 1974. Changes in 32P content of phosphatidic acid and the phosphoinositides of rabbit platelets during aggregation induced by collagen or thrombin. Br. J. Haematol. 16:243–253.

    Article  Google Scholar 

  • Lloyd, J. F., Nishizawa, E. E., and Mustard, J. F. 1973. Effect of ADP-induced shape change on incorporation of 32P into platelet phosphatidic acid and mono-, di-, and triphosphati-dylinositol. Br. J. Haematol. 25:77–99.

    Article  PubMed  CAS  Google Scholar 

  • Lucas, C. T., Call, F. L., and Williams, W. J. 1970. The biosynthesis of phosphatidylinositol in human platelets. J. Clin. Invest. 49:1949–1955.

    Article  PubMed  CAS  Google Scholar 

  • Majerus, P. W., Smith, M. B., and Clamon, G. H. 1969. Lipid metabolism in human platelets I. Evidence for a complete fatty acid synthesizing system.J. Clin. Invest. 48:156–164.

    Article  PubMed  CAS  Google Scholar 

  • Malmsten, C., Hamberg, M., Svensson, J., and Samuelsson B. 1975. Physiological role of an endoperoxide in human platelets: Hemostatic defect due to platelet cyclo-oxygenase deficiency. Proc. Natl. Acad. Sci. USA 72:1446–1450.

    Article  PubMed  CAS  Google Scholar 

  • Marcus, A. J., Ullman, H. L., and Safier, L. B. 1969. Lipid composition of subcellular particles of human blood platelets. J. Lipid Res. 10:108–114.

    PubMed  CAS  Google Scholar 

  • Marcus, A. J., Ullman, H. L., and Safier, L. B. 1972. Studies on human platelet gangliosides.J. Clin. Invest. 51:2602–2612.

    Article  PubMed  CAS  Google Scholar 

  • Marcus, A. J., Safier, L. B., and Ullman, H. L. 1975. Interactions between 5-hydroxytryptamine and platelet lipid fractions, pp. 309–326. In Biochemistry and Pharmacology of Platelets. CIBA Foundation Symposium 35 (New Series) American-Elsevier, N.Y.

    Google Scholar 

  • Marks, P. A., Gellhorn, A., and Kidson, C. 1960. Lipid synthesis in human leukocytes, platelets, and erythrocytes. J. Biol. Chem. 235:2579–2583.

    PubMed  CAS  Google Scholar 

  • Okuma, M., Yamashita, S., and Numa S. 1973. Enzymic studies on phosphatidic acid synthesis in human platelets. Blood 41:379–389.

    PubMed  CAS  Google Scholar 

  • Porcellati, G., Arienti, G., Pirotta, M., and Giorgini, D. 1971. Base-exchange reactions for synthesis of phospholipids in nervous tissue: The incorporation of serine and ethanolamine into the phospholipids of isolated brain microsomes. J. Neurochem. 18:1395–1417.

    Article  PubMed  CAS  Google Scholar 

  • Russell, F. A., and Deykin, D. 1976. The effect of thrombin on the uptake and transformation of arachidonic acid by human platelets. Am. J. Hematol. 1:59–70.

    Article  PubMed  CAS  Google Scholar 

  • Saftit, W., Weiss, H. J., and Phillips, G. 1972. The phospholipid and fatty acid composition of platelets in patients with primary defects of platelet function. Lipids 7:60–67.

    Article  Google Scholar 

  • Salzman, E. W., Stead, N., and Deykin, D. 1973. Interrelations of platelet prostaglandin synthesis and cyclic AMP metabolism. IVth International Congress on Thrombosis and Hemostasis, Vienna, p. 78, Abstr. No. 46.

    Google Scholar 

  • Schick, P. K., and Yu, B. P. 1974. The role of platelet membrane phospholipids in the platelet release reaction. J. Clin. Invest. 54:1032–1039.

    Article  PubMed  CAS  Google Scholar 

  • Shattil, S. J., Anaya-Galindo, R., Bennett, J., Colman, R. W., and Cooper, R. A. 1975. Platelet hypersensitivity induced by cholesterol incorporation. J. Clin. Invest. 55:636–643.

    Article  PubMed  CAS  Google Scholar 

  • Shio, H., and Ramwell, P. W. 1972. Effect of prostaglandin E2 and aspirin on the secondary aggregation of human platelets. Nat. New Biol. 236:45–46.

    Article  PubMed  CAS  Google Scholar 

  • Smith, J. B., and Willis, A. L. 1971. Aspirin selectively inhibits prostaglandin production in human platelets. Nat. New Biol. 231:235–237.

    PubMed  CAS  Google Scholar 

  • Smith, J. B., Ingerman, C., Kocsis, J. J., and Silver, M. J. 1974. Formation of an intermediate in prostaglandin synthesis and its association with the platelet release reaction. J. Clin. Invest. 53:1468–1472.

    Article  PubMed  CAS  Google Scholar 

  • Snyder, P. D., Desnick, R. S., and Krivit, W. 1972. The glycosphingolipids and glycosyl hydrolases of human blood platelets. Biochem. Biophys. Res. Commun. 46:1857–1865.

    Article  PubMed  CAS  Google Scholar 

  • Spector, A. A., Hoak, J. D., Warner, E. D., and Fry, G. L. 1970. Utilization of long-chain free fatty acids by human platelets. J. Clin. Invest. 49:1489–1496.

    Article  PubMed  CAS  Google Scholar 

  • Turner, S. R., Tainer, J. A., and Lynn, W. S. 1975. Biogenesis of chemotactic molecules by the arachidonate lipoxygenase of platelets. Nature 257:680–681.

    Article  PubMed  CAS  Google Scholar 

  • Willis, A. L. 1974a. En enzymatic mechanism for the antithrombotic and antihemostatic actions of aspirin. Science 183:325–327.

    Article  PubMed  CAS  Google Scholar 

  • Willis, A. L. 1974b. Isolation of a chemical trigger for thrombosis. Prostaglandins 5:1–25.

    Article  PubMed  CAS  Google Scholar 

  • Willis, A. L., and Weiss, H. J. 1973. A congenital defect in platelet prostaglandin production associated with impaired hemostasis in storage pool disease. Prostaglandins 4:783–794.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1977 Plenum Press, New York

About this chapter

Cite this chapter

Deykin, D. (1977). Platelet Lipids. In: Snyder, F. (eds) Lipid Metabolism in Mammals. Monographs in Lipid Research. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-2832-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-2832-2_8

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-2834-6

  • Online ISBN: 978-1-4684-2832-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics