White Cells

  • Peter Elsbach
Part of the Monographs in Lipid Research book series (MLR)


The peripheral blood leukocyte population represents both morphologically and functionally a heterogeneous group of cells. Only in recent years has an attempt been made to find a possible relationship between the lipid composition and metabolism of the different cell types and the various specialized functions of each subgroup.


Alveolar Macrophage Peripheral Blood Leukocyte Bacillus Calmette Guerin Phospholipid Metabolism Cholesterol Esterase 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Allan, D., and Crumpton, M. J. 1972. Isolation and composition of human thymocyte plasma membrane. Biochim. Biophys. Acta 274:22–27.PubMedCrossRefGoogle Scholar
  2. Beckerdite, S., Mooney, C., Weiss, J., Franson, R., and Elsbach, P. 1974. Early and discrete changes in permeability of Escherichia coli and certain other gram-negative bacteria during killing by granulocytes. J. Exp. Med. 140:396–409.PubMedCrossRefGoogle Scholar
  3. Blomstrand, R. 1966. Fatty acid synthesis in human lymphocytes. Acta Chem. Scand. 20:1122–1128.PubMedCrossRefGoogle Scholar
  4. Cohn, Z. A. 1963. The fate of bacteria within phagocytic cells. I. The degradation of isotopically labeled bacteria by polymorphonucelar leukocytes and macrophages.J. Exp. Med. 117:27–42.PubMedCrossRefGoogle Scholar
  5. Cohn, Z. A., and Benson, H. 1965. The differentiation of mononuclear phagocytes. Morphology, cytochemistry and biochemistry.J. Exp. Med. 121:153–166.PubMedCrossRefGoogle Scholar
  6. Cornell, R. P., and Saba, T. M. 1971. Vascular clearance and metabolism of lipid by the reticuloendothelial system in dogs. Am. J. Physiol. 221:1511–1518.PubMedGoogle Scholar
  7. Day, A. J. 1967. Lipid metabolism by macrophages and its relationship to atherosclerosis. Adv. Lipid Res. 5:185–207.PubMedGoogle Scholar
  8. Day, A. J., and Fidge, N. H. 1962. The uptake and metabolism of 14C-labeled fatty acids by macrophages in vitro. J. Lipid Res. 3:333–338.Google Scholar
  9. Day, A. J., and Fidge, N. H. 1964. Incorporation of 14C-labeled acetate by macrophages in vitro. J. Lipid Res. 5:163–168.PubMedGoogle Scholar
  10. De Gier, J., Mandersloot, J. G., and van Deenen, L. L. M. 1968. Lipid composition and permeability of liposomes. Biochim. Biophys. Acta 150:666–675.PubMedCrossRefGoogle Scholar
  11. Demel, R. A., Bruckdorfer, K. R., and van Deenen, L. L. M. 1972. The effect of sterol structure on the permeability of liposomes to glucose, glycerol and Rb+. Biochim. Biophys. Acta 255:321–330.PubMedCrossRefGoogle Scholar
  12. De Pierre, J. W., and Karnovsky, M. L. 1973. Plasma membranes of mammalian cells. A review of methods of their characterization and isolation. J. Cell Biol. 56:275–303.CrossRefGoogle Scholar
  13. Edidin, M., and Weiss, A. 1972. Antigen cap formation in cultured fibroblasts: A reflection of membrane fluidity and cell motility. Proc. Natl. Acad. Sci. USA 60:2456–2459.CrossRefGoogle Scholar
  14. Elsbach, P. 1959. Composition and synthesis of lipids in resting and phagocytizing leukocytes.J. Exp. Med. 110:969–980.CrossRefGoogle Scholar
  15. Elsbach, P. 1963. Incorporation of linoleic acid-1-14C into lipids of polymorphonuclear leukocytes. Biochim. Biophys. Acta 70:157–167.CrossRefGoogle Scholar
  16. Elsbach, P 1965. Uptake of fat by phagocytic cells. An examination of the role of phagocytosis. II. Rabbit alveolar macrophages. Biochim. Biophys. Acta 98:420–431.PubMedGoogle Scholar
  17. Elsbach, P., 1966. Phospholipid metabolism by phagocytic cells. I. A comparison of conversion of 32P lysolecithin to lecithin and glycerylphosphorylcholine by homogenates of rabbit polymorphonuclear leukocytes and alveolar macrophages. Biochim. Biophys. Acta 125:510–524.PubMedGoogle Scholar
  18. Elsbach, P. 1967. Metabolism of lysophosphatidylethanolamine and lysophosphatidylcholine by homogenates of rabbit polymorphonuclear leukocytes and alveolar macrophages. J. Lipid Res. 8:359–365.PubMedGoogle Scholar
  19. Elsbach, P. 1968. Increased synthesis of phospholipid during phagocytosis.J. Clin. Invest. 47:2217–2229.PubMedCrossRefGoogle Scholar
  20. Elsbach, P. 1972. Lipid metabolism by phagocytes. Semin. Hematol. 9:227–239.PubMedGoogle Scholar
  21. Elsbach, P. 1973. On the interaction between phagocytes and microorganisms. N. Eng. J. Med. 289:846–852.CrossRefGoogle Scholar
  22. Elsbach, P. 1974. Phagocytosis, pp. 363–408. In B. W. Zweifach, L. Grant, and R. T. McCluskey (eds). The Inflammatory Process. Vol. I. Academic Press, New York.Google Scholar
  23. Elsbach, P. and Farrow, S. 1969. Cellular triglyceride as a source of fatty acid for lecithin synthesis during phagocytosis. Biochim. Biophys. Acta 176:438–441.PubMedGoogle Scholar
  24. Elsbach, P., and Kayden, H. J. 1965. Chylomicron-lipid-splitting activity of rabbit polymorphonuclear leukocytes. Am. J. Physiol. 209:765–769.PubMedGoogle Scholar
  25. Elsbach, P., and Rizack, M. A. 1963. Acid lipase and phospholipase activity in homogenates of rabbit polymorphonuclear leukocytes. Am. J. Physiol. 205:1154–1158.PubMedGoogle Scholar
  26. Elsbach, P., Zucker-Franklin, D., and Sansaricq, C. 1969. Increased lecithin synthesis during phagocytosis by normal leukocytes and by leukocytes of a patient with chronic granulomatous disease. New Engl. J. Med. 280:1319–1322.PubMedCrossRefGoogle Scholar
  27. Elsbach, P., Goldman, J., and Patriarca, P. 1972a. Phospholipid metabolism by phagocytic cells. VI. Observations on the fate of phospholipids of granulocytes and ingested Escherichia coli during phagocytosis. Biochim. Biophys. Acta 280:33–44.PubMedGoogle Scholar
  28. Elsbach, P., Patriarca, P., Pettis, P., Stossel, T. P., Mason, R. J., and Vaughan, M. 1972b. The appearance of 32P-lecithin, synthesized from 32P-lysolecithin, in phagosomes from polymorphonuclear leukocytes.J. Clin. Invest. 51:1910–1914.PubMedCrossRefGoogle Scholar
  29. Elsbach, P., Pettis, P., Beckerdite, S., and Franson, R. 1973. Effect of phagocytosis by rabbit granulocytes on macromolecular synthesis and degradation in different species of bacteria. J. Bacteriol. 115:490–497.PubMedGoogle Scholar
  30. Evans, W. H., and Mueller, P. S. 1963. Effects of palmitate on the metabolism of leukocytes from guinea pig exudate. J. Lipid Res. 4:39–45.PubMedGoogle Scholar
  31. Ferber, E., Resch, K., Wallach, D. F. H., and Imm, W. 1972. Isolation and characterization of lymphocyte plasma membranes. Biochim. Biophys. Acta 266:494–504.PubMedCrossRefGoogle Scholar
  32. Fischer, D. B., and Mueller, G. C. 1968. An early alteration in the phospholipid metabolism of lymphocytes by phytohemagglutinin. Proc. Natl. Acad. Sci. U.S. 60:1396–1402.CrossRefGoogle Scholar
  33. Fischer, D. B., and Mueller, G. C. 1969. The stepwise acceleration of phosphatidylcholine synthesis in phytohemagglutinin-treated lymphocytes. Biochim. Biophys. Acta 176:316–323.Google Scholar
  34. Fischer, D. B., and Mueller, G. C. 1971. Studies on the mechanism by which phytohemagglutinin stimulates phospholipid metabolism of human lymphocytes. Biochim. Biophys. Acta 248:434–448.Google Scholar
  35. Fogelman, A. M., Edmond, E., Seager, J., and Popjak, G. 1975. Abnormal induction of 3-hydroxy-3-methylglutaryl coenzyme A reductase in leukocytes from subjects with heterozygous familial hypercholesterolemia. J. Biol. Chem. 250:2045–2055.PubMedGoogle Scholar
  36. Franson, R., Beckerdite, S., Wang, P., Waite, M., and Elsbach, P. 1973. Some properties of phospholipases of alveolar macrophages. Biochim. Biophys. Acta 296:365–373.PubMedGoogle Scholar
  37. Franson, R., Patriarca, P., and Elsbach, P. 1974. Phospholipid metabolism by phagocytic cells. Phospholipases A2 associated with rabbit polymorphonuclear leukocyte granules. J. Lipid Res. 15:380–388.PubMedGoogle Scholar
  38. Fredrickson, D. S., and Sloan, H. R. 1972. Sphingomyelin Lipidoses: Nieman-Pick disease, pp. 783–807. In J. B. Stanbury, J. B. Wyngaarden, and D. S. Frederickson (eds.). The Metabolic Basis of Inherited Disease. McGraw-Hill Book Company, New York.Google Scholar
  39. Gahmberg, C. G., and Hakomori, S. 1973. Altered growth behavior of malignant cells associated with changes in externally labeled glycoprotein and glycolipid. Proc. Natl. Acad. Sci. USA 70:3329–3333.PubMedCrossRefGoogle Scholar
  40. Gottfried, E. L. 1972. Lipid composition and metabolism of leukocytes, pp. 387–415. In G. J. Nelson (ed.). Blood Lipids and Lipoproteins: Quantitation, Composition and Metabolism. Wiley-Interscience Publishers, New York.Google Scholar
  41. Hakomori, S., and Murakami, W. T. 1968. Glycolipids of hamster fibroblasts and derived malignant-transformed cell lines. Proc. Natl. Acad. Sci. USA 59:254–261.PubMedCrossRefGoogle Scholar
  42. Hildebrand, J., Marique, D., and Vanhouche, J. 1975. Lipid composition of plasma membranes from human leukemic lymphocytes. J. Lipid Res. 16:195–199.PubMedGoogle Scholar
  43. Huber, H., Strieder, N., Winnler, H., Reiser, G., and Koppelstaetter, K. 1968. Studies on the incorporation of 14C sodium acetate into the phospholipids of phytohemagglutinin-stimulated and unstimulated lymphocytes. Br. J. Haematol. 15:203–209.PubMedCrossRefGoogle Scholar
  44. Inbar, M., and Shinitzky, M. 1974. Increase of cholesterol level in the surface membrane of lymphoma cells and its inhibitory effect on ascites tumor development. Proc. Natl. Acad. Sci. USA 71:2128–2130.PubMedCrossRefGoogle Scholar
  45. Kampine, J. P., Brady, R. O., Kanfer, J. N., Feld, K., and Shapiro, D. 1967. Diagnosis of Gaucher’s disease and Niemann-Pick disease with small samples of venous blood. Science 155:86–88.PubMedCrossRefGoogle Scholar
  46. Karnovsky, M. L., and Wallach, D. H. F. 1961. The metabolic basis of phagocytosis. III. Incorporation of inorganic phosphate into various classes of phosphatides during phagocytosis.J. Biol. Chem. 236:1895–1901.PubMedGoogle Scholar
  47. Kennedy, E. P. 1962. The metabolism and function of complex lipids. Harvey Lect. 57:143–171.Google Scholar
  48. Klebanoff, S. J. 1975. Antimicrobial mechanisms in neutrophilic polymorphonuclear Leukocytes. Semin. Hematol. 12:117–142.PubMedGoogle Scholar
  49. Lands, W. E. M. 1960. Metabolism of glycerolipids. II. The enzymatic acylation of lysolecithin.J. Biol. Chem. 235:2233–2241.PubMedGoogle Scholar
  50. Liljeqvist, L. 1973. Lipid biosynthesis in human thoracic duct lymphocytes and thymocytes. Acta Chem. Scand. 27:891–902.PubMedCrossRefGoogle Scholar
  51. Liljeqvist, L., Gürtler, J., and Biomstrand, R. 1973. Sterol and phospholipid biosynthesis in phytohemagglutinin stimulated human lymphocytes. Acta Chem. Scand. 27:197–208.PubMedCrossRefGoogle Scholar
  52. Majerus, P. W., and Lastra, R. 1967. Fatty acid biosynthesis in human leukocytes. J. Clin. Invest. 46:1596–1602.PubMedCrossRefGoogle Scholar
  53. Marique, D., and Hildebrand, J. 1973. Isolation and characterization of plasma membranes from human leukemic lymphocytes. Cancer Res. 33:2761–2767.PubMedGoogle Scholar
  54. Mason, R. J., Stossel, T. P., and Vaughan, K. 1972. Lipids of alveolar macrophages, polymorphonuclear leukocytes, and their phagocytic vesicles. J. Clin. Invest. 51:2399–2407.PubMedCrossRefGoogle Scholar
  55. Miras, C. J., Mantzos, J. D., and Levis, G. M. 1964. Incorporation of 1–3-14C serine into microsomal phospholipids of human leukocytes. Biochim. Biophys. Acta 84:101–103.PubMedGoogle Scholar
  56. Miras, C. J., Mantzos, J. D., and Levis, G. M. 1965. Fatty acid synthesis in human leucocytes. Biochem. Biophys. Res. Commun. 19:79–83.CrossRefGoogle Scholar
  57. Miras, C. J., Mantzos, J. D., and Levis, G. M. 1966. The isolation and partial characterization of glycolipids of normal human leucocytes. Biochem. J. 98:782–786.PubMedGoogle Scholar
  58. Mooney, C., and Elsbach, P. 1975. Altered phospholipid metabolism in Escherichia coli accompanying killing by disrupted granulocytes. Infect. Immun. 11:1269–1277.PubMedGoogle Scholar
  59. Oren, R., Farham, A. E., Saito, K., Milofsky, E., and Karnovsky, M. L. 1963. Metabolic patterns in three types of phagocytic cells. J. Cell Biol. 17:487–502.PubMedCrossRefGoogle Scholar
  60. Patriarca, P., Beckerdite, S., Pettis, P., and Elsbach, P. 1972. Phospholipid metabolism by phagocytic cells. VII. The degradation and utilization of phospholipids of various microbial species by rabbit granulocytes. Biochim. Biophys. Acta 280:45–56.PubMedGoogle Scholar
  61. Resch, K., and Ferber, E. 1972. Phospholipid metabolism of stimulated lymphocytes. Eur. J. Biochem. 27:153–161.PubMedCrossRefGoogle Scholar
  62. Resch, K., Ferber, E., Odenthal, J., and Fischer, H. 1971. Early changes in the phospholipid metabolism of lymphocytes following stimulation with phytohemagglutinin and with lysolecithin. Eur. J. Immunol. 1:162–165.PubMedCrossRefGoogle Scholar
  63. Sastry, P. S., and Hokin, L. E. 1966. Studies on the role of phospholipids in phagocytosis.J. Biol. Chem. 241:3354–3361.PubMedGoogle Scholar
  64. Shohet, S. B. 1970. Changes in fatty acid metabolism in human leukemic granulocytes during phagocytosis. J. Lab. Clin. Med. 75:659–667.PubMedGoogle Scholar
  65. Singer, S. H., and Nicolson, G. L. 1972. The fluid mosaic model of the structure of cell membranes. Science 175:720–731.PubMedCrossRefGoogle Scholar
  66. Smolen, J. E., and Shohet, S. B. 1974. Remodeling of granulocyte membrane fatty acids during phagocytosis. J. Clin. Invest. 53:726–734.PubMedCrossRefGoogle Scholar
  67. Steinman, R. M., and Cohn, Z. A. 1974. The metabolism and physiology of the mononuclear phagocytes, pp. 450–510. In B.W. Zweifach, L. Grant, and R. T. McCluskey (eds.). The Inflammatory Process. Vol. I, Academic Press, New York.Google Scholar
  68. Stossel, T. P., Mason, R. J., and Smith, A. L. 1974. Lipid peroxidation by human blood phagocytes. J. Clin. Invest. 54:638–645.PubMedCrossRefGoogle Scholar
  69. Switzer, S., and Eder, H. K. 1965. Transport of lysolecithin by albumin in human and rat plasma. J. Lipid Res. 6:506–512.PubMedGoogle Scholar
  70. Van den Bosch, H. 1974. Phosphoglyceride metabolism. Annu. Rev. Biochem. 43:243–277.PubMedCrossRefGoogle Scholar
  71. Weglicki, W. B., Ruth, R. C., Owens, K., Griffin, H. D., and Waite, B. M. 1974. Changes in lipid composition of triton-filled lysosomes during lysis. Association with activation of acid-active lipases and phospholipases. Biochim. Biophys. Acta 337:145–152.PubMedGoogle Scholar
  72. Weiss, J., Franson, R., Beckerdite, S., Schmeidler, K., and Elsbach, P. 1975. Partial characterization and purification of a rabbit granulocyte factor that increases permeability of Escherichia coli. J. Clin. Invest. 55:33–42.PubMedCrossRefGoogle Scholar
  73. Werb, Z., and Cohn, Z. A. 1971a. Cholesterol metabolism in the macrophage I. The regulation of cholesterol exchange.J. Exp. Med. 134:1545–1569.PubMedCrossRefGoogle Scholar
  74. Werb, Z., and Cohn, Z. A. 1971b. Cholesterol metabolism in the macrophage n. Alteration of subcellular exchangeable cholesterol compartments and exchange in other cell types. J. Exp. Med. 134:1570–1590.PubMedCrossRefGoogle Scholar
  75. Werb, Z., and Cohn, Z. A. 1972a. Cholesterol metabolism in the macrophage III. Ingestion and intracellular fate of cholesterol and cholesterol esters.J. Exp. Med. 135:21–44.PubMedCrossRefGoogle Scholar
  76. Werb, Z. and Cohn, Z. A. 1972b. Membrane synthesis in the macrophage following phagocytosis of polystyrene latex particles. J. Biol. Chem. 247:2439–2446.PubMedGoogle Scholar
  77. Wintrobe, M. M. 1974. Clinical Hematology. Lea and Febiger, Philadelphia. 1896 pp.Google Scholar
  78. Yahara, I., and Edelman, G. M. 1973. Modulation of lymphocyte receptor redistribution by concanavalin A, antimitotic agents and alterations of pH. Nature 246:152–155.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1977

Authors and Affiliations

  • Peter Elsbach
    • 1
  1. 1.Department of MedicineNew York University School of MedicineNew YorkUSA

Personalised recommendations