Red Blood Cells

  • Stephen B. Shohet
Part of the Monographs in Lipid Research book series (MLR)


The lipid in the mature erythrocyte of mammalian animals is solely contained in the plasma membrane. Lipids account for nearly 50% of the mass of the membrane while proteins are also present in a similar amount. Only very small quantities of sugars in the form of glycoproteins and glycolipids are present although these more hydrophilic moieties may be particularly important in the immunologic specificity of the cells. Since the human red cell has been much more extensively studied than those of other animals, this review will be confined primarily to a consideration of the lipid metabolic pathways of that cell. Moreover, since the disease state termed “hemolytic anemia” represents the premature destruction of the erythrocyte plasma membrane, and since this disease state has frequently prompted biochemical investigations of the lipid metabolism of the affected cells, some of the orientation of this review will be toward hemolytic anemias which are associated with defects in the lipid metabolic pathways of erythrocyte’s plasma membranes.


Free Fatty Acid Hemolytic Anemia Human Erythrocyte Phosphatidic Acid Membrane Cholesterol 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Brecher, G., and Bessis, M. 1972. Present status of spiculed red cells and their relationship to the discocyte-echinocyte transformation: A critical review. Blood 40:333–344.PubMedGoogle Scholar
  2. Bretscher, M. 1972. Asymmetrical lipid bilayer structure for biological membranes. Nature (London) New Biol. 236:11–12.CrossRefGoogle Scholar
  3. Cooper, R. A. 1969. Anemia with spur cells: A red cell defect acquired in serum and modified in the circulation. J. Clin. Invest. 48:1820–1831.PubMedCrossRefGoogle Scholar
  4. Cooper, R. A. 1970. Lipids of human red cell membrane: Normal composition and variability in disease. Semin. Hematol. 7:296–322.PubMedGoogle Scholar
  5. Cooper, R. A., and Jandl, J. H. 1968. Bile salts and cholesterol in the pathogenesis of target cells in obstructive jaundice. J. Clin. Invest. 47:809–822.PubMedCrossRefGoogle Scholar
  6. Cooper, R. A., Kimball, D. B., and Durocher, J. R. 1974. Role of the spleen in membrane conditioning and hemolysis of spur cells in liver disease. New Engl. J. Med. 290:1279–1284.PubMedCrossRefGoogle Scholar
  7. Danielli, J. F., and Davson, H. 1935. A contribution to the theory of permeability of thin films. J. Cell. Comp. Physiol. 5:495–507.CrossRefGoogle Scholar
  8. De Gier, J., and Van Deenen, L. L. M. 1964. A dietary investigation on the variations in phospholipid characteristics of red-cell membranes. Biochim. Biophys. Acta 84:294–304.Google Scholar
  9. Donabedian, R. K., and Karmen, A. 1967. Fatty acid transport and incorporation into human erythrocytes in vitro. J. Clin. Invest. 46:1017–1027.PubMedCrossRefGoogle Scholar
  10. Dowben, R. M. 1969. Composition and structure of membranes, pp. 1–38. In R. M. Dowben (ed.). Biological Membranes. Boston, Little Brown, and Co.Google Scholar
  11. Erbland, J. F., and Marinetti, G. V. 1965. The enzymatic acylation and hydrolysis of lysolecithin. Biochim. Biophys. Acta 106:128–138.PubMedGoogle Scholar
  12. Ferber, E., Krüger, J., Munder, P. G., Kochlschutter, A., and Fischer, A. 1968. Acyltransfer-ase- und Lysophospholipase-Aktivität in Membranen von Erythrocyten während der Alternung in vivo and in vitro, pp. 393–398. In Metabolism and Membrane Permeability of Erythrocytes and Thrombocytes. E. Deutsch, E. Gerlach, and K. Moser. Stuttgard, Thieme.Google Scholar
  13. Gallai-Hatchard, J. J., and Thompson, R. H. 1965. Phospholipase-A activity of mammalian tissues. Biochim. Biopys. Acta 98:128–136.Google Scholar
  14. Gjone, E., and Norum K. R. 1970. Plasma lecithin-cholesterol acyltransferase and erythrocyte lipids in liver disease. Acta Med. Scan. 187:153–161.CrossRefGoogle Scholar
  15. Goodman, D. S. 1958. The interaction of human erythrocytes with sodium palmitate. J. Clin. Invest. 37:1729–1735.PubMedCrossRefGoogle Scholar
  16. Gordesky, S. E., and Marinetti, G. V. 1973. The asymmetric arrangement of phospholipids in the human erythrocyte membrane. Biochem. Biophys. Res. Commun. 50:1027–1031.PubMedCrossRefGoogle Scholar
  17. Goiter, E., and Grendel, F. 1925. On biomolecular layer of lipoids on the chromocytes of the blood. J. Exp. Med. 41:439–443.CrossRefGoogle Scholar
  18. Grossman, C. M., and Horky, J., and Kohn, R. 1966. In vitro incorporation of 32P orthophosphate into phosphatiydl ethanolamine and other phosphatides by mature human erythrocyte ghosts. Arch. Biochem. Biophys. 117:18–27.PubMedCrossRefGoogle Scholar
  19. Hubbell, W. L., and McConnell, H. M. 1969. Motion of steroid spin labels in membranes. Proc. Natl. Acad. Sci. USA 63:16–22.PubMedCrossRefGoogle Scholar
  20. Jaffé, E. R. and Gottfried, E. L. 1968. Hereditary non-spherocytic hemolytic disease associated with an altered phospholipid composition of the erythrocytes. 7. Clin. Invest. 47:1375–1388.CrossRefGoogle Scholar
  21. Lubin, B. H., Shohet, S. B., and Nathan, D. G. 1972. Changes in fatty acid metabolism after erythrocyte peroxidation: Stimulation of a membrane repair process. J. Clin. Invest. 51:338–344.PubMedCrossRefGoogle Scholar
  22. McBride, J. A., and Jacob, H. S. 1970. Abnormal kinetics of red cell membrane cholesterol in acanthocytes: Studies in genetic and experimental abetalipoproteinaemia and in spur cell anaemia. Br. J. Haematol. 18:383–397.PubMedCrossRefGoogle Scholar
  23. McLeod, M. E., and Bressler, R. 1967. Some aspects of phospholipid metabolism in the red cell. Biochim. Biophys. Acta 144:391–396.PubMedGoogle Scholar
  24. Mulder, E., and Van Deenen, L. L. M. 1965. Metabolism of red-cell lipids. I. Incorporation in vitro of fatty acids into phospholipids from mature erythrocytes. Biochim. Biophys. Acta 106:106–117.PubMedGoogle Scholar
  25. Mulder, E., Van Den Berg, J. W. O., and Van Deenen, L. L. M. 1965. Metabolism of red-cell lipids. II. Conversions of lysophosphoglycerides. Biochim. Biophys. Acta 106:118–127.PubMedGoogle Scholar
  26. Neerhout, R. C. 1968. Abnormalities of erythrocyte stromal lipids in hepatic disease. J. Lab. Clin. Med. 71:438–447.PubMedGoogle Scholar
  27. Nelson, G. J. 1967. Composition of neutral lipids from erythrocytes of common mammals. J. Lipid Res. 8:374–379.PubMedGoogle Scholar
  28. Oliveira, M. M., and Vaughan, M. 1964. Incorporation of fatty acids into phospholipids of erythrocyte membranes. J. Lipid Res. 5:156–162.PubMedGoogle Scholar
  29. Phillips, G. B., Dodge, J. T., and Howe, C. 1969. The effect of aging of human red cells in vivo on their fatty acid composition. Lipids 4:544–549.PubMedCrossRefGoogle Scholar
  30. Pinto da Silva, P. 1972. Translational mobility of the membrane intercalated particles of human erythrocyte ghosts. J. Cell Biol. 53:777–787.PubMedCrossRefGoogle Scholar
  31. Pittman, J. G., and Martin, D. B. 1966. Fatty acid biosynthesis in human erythrocytes: Evidence in mature erythrocytes for an incomplete long chain fatty acid synthesizing system. J. Clin. Invest. 45:165–172.PubMedCrossRefGoogle Scholar
  32. Rand, R. P. 1968. The structure of a model membrane in relation to the viscoelastic properties of the red cell membrane. J. Gen. Physiol. 52: Suppl:173–186.CrossRefGoogle Scholar
  33. Reed, C. F. 1968a. Phospholipid exchange between plasma and erythrocytes in man and the dog. J. Clin. Invest. 47:749–760.PubMedCrossRefGoogle Scholar
  34. Reed, C. F. 1968b. Incorporation of orthophosphate-32P into erythrocyte phospholipids in normal subjects and in patients with hereditary spherocytosis. J. Clin. Invest. 47:2630–2638.PubMedCrossRefGoogle Scholar
  35. Renooij, W., Van Golde, L. M. G., Zwaal, R. F. A., Roelofsen, B., and Van Deenen, L. L. M. 1974. Preferential incorporation of fatty acids at the inside of human erythrocyte membranes. Biochim. Biophys. Acta 363:287–292.PubMedCrossRefGoogle Scholar
  36. Rothman, J. E., and Engelman, D. M. 1972. Moelcular mechanism for the interaction of phospholipid with cholesterol. Native (London) New Biol. 237:42–44.CrossRefGoogle Scholar
  37. Sakagami, T., Minari, O., and Orii, T. 1965. Behavior of plasma lipoproteins during exchange of phospholipids between plasma and erythrocytes. Biochim. Biophys. Acta 98:111–116.PubMedGoogle Scholar
  38. Scidel, D., Alaupovic, P., and Furman, R. H. 1969. A lipoprotein characterizing obstructive jaundice. 1. Method for quantitative separation and identification of lipoproteins in jaundiced subjects. J. Clin. Invest. 48:1211–1223.CrossRefGoogle Scholar
  39. Shohet, S. B. 1970. Release of phospholipid fatty acid from human erythrocytes. J. Clin. Invest. 49:1668–1678.PubMedCrossRefGoogle Scholar
  40. Shohet, S. B. 1971. The apparent transfer of fatty acid from phosphatidylcholine to phosphati-dylethanolamine in human erythrocytes. J. Lipid Res. 12:139–142.Google Scholar
  41. Shohet, S. B. 1972. Hemolysis and changes in erythrocyte membrane lipids. New Engl. J. Med. 286:577–583.PubMedCrossRefGoogle Scholar
  42. Shohet, S. B., and Haley, J. E. 1973. Red cell membrane shape and stability: Relation to cell lipid renewal pathways and cell ATP. Nouv. Rev. Fr. Hematol. 12:761–770.Google Scholar
  43. Shohet, S. B., and Nathan, D. G. 1970. Incorporation of phosphatide precursors from serum into erythrocytes. Biochim. Biophys. Acta 202:202–205.PubMedGoogle Scholar
  44. Shohet, S. B., Nathan, D. G., and Karnovsky, M. L. 1968. Stages in the incorporation of fatty acids into red blood cells. J. Clin. Invest. 47:1096–1108.PubMedCrossRefGoogle Scholar
  45. Shohet, S. B., Livermore, B. M., Nathan, D. G., and Jaffé, E. R. 1971. Hereditary hemolytic anemia associated with abnormal membrane lipids: Mechanism of accumulation of phospatidyl choline. Blood 38:445–456.PubMedGoogle Scholar
  46. Silber R., Amorosi, E., Lhowe, J., and Kayden, H. J. 1966. Spur-shaped erythrocytes in Laennec’s cirrhosis. New Engl. J. Med. 275:639–643.PubMedCrossRefGoogle Scholar
  47. Singer, S. J., and Nicolson, G. L. 1972. The fluid mosaic model of the structure of cell membranes. Science 175:720–731.PubMedCrossRefGoogle Scholar
  48. Smith, J. A., Lonergan, E. T., and Sterling, K. 1964. Spur-cell anemia: Hemolytic anemia with red cells resembling acanthocytes in alcoholic cirrhosis. New Engl. J.Med. 271:396–398.PubMedCrossRefGoogle Scholar
  49. Sweeley, C. C., and Dawson, G. 1969. Lipids of the erythrocyte, pp. 172–232. In G. A. Jamieson and T. J. Greenwalt (eds.). Red Cell Membrane Structure and Function. J. B. Lippincott, Philadelphia.Google Scholar
  50. Switzer, S., and Eder, H. A. 1965. Transport of lysolecithin by albumin in human and rat plasma. J. Lipid Res. 6:506–511.PubMedGoogle Scholar
  51. Tarlov, A. R. 1966. Lecithin and lysolecithin metabolism in rat erythrocyte membranes. Blood 28:990–991.Google Scholar
  52. Turner, J. D., and Rouser, G. 1970. Precise quantitative determination of human blood lipids by thin layer and triethylaminoethyl cellulose column chromatography. Anal. Biochem. 38:423–436.PubMedCrossRefGoogle Scholar
  53. Van Gastel, C., Van Den Berg, D., De Gier, J., and Van Deenen, L. L. M. 1965. Some lipid characteristics of normal red blood cells of different age. Br. J. Haematol. 11:193–199.CrossRefGoogle Scholar
  54. Waku, K., and Lands, W. E. M. 1968. Control of lecithin biosynthesis in erythrocyte membranes. J. Lipid Res. 9:12–18.PubMedGoogle Scholar
  55. Ways, P., and Hanahan, D. J. 1964. Characterization and quantification of red cell lipids in normal man. J. Lipid Res. 5:318–328.PubMedGoogle Scholar
  56. Wessels, J. M. C., and VerrKamp, J. H. 1973. Some aspects of the osmotic lysis of erythrocytes. III. Comparison of gylcerol permeability and lipid composition of red blood cell membranes from eight mammalian species. Biochem. Biophys. Acta 291:190–196.PubMedCrossRefGoogle Scholar
  57. Winterboum, C. C., and Batt, R. D. 1970. The uptake of plasma fatty acids into human red cells and its relationship to cell age. Biochim. Biophys. Acta 202:9–20.Google Scholar

Copyright information

© Plenum Press, New York 1977

Authors and Affiliations

  • Stephen B. Shohet
    • 1
  1. 1.Department of Medicine, Department of Laboratory Medicine, and the Cancer Research InstituteUniversity of CaliforniaSan FranciscoUSA

Personalised recommendations