Gastrointestinal Tissue

  • John M. Johnston
Part of the Monographs in Lipid Research book series (MLR)


The intestinal absorption of lipids in mammals has been the subject of investigation for longer periods than any other area of lipid metabolism. The controversy which centeied around the various theories of absorption has been the subject of intense debate (Johnston, 1969). In the late 19th century two investigators, Munk (1900) and Pfluger (1900), set the stage for the two conflicting theories of fat absorption. These were referred to as the particulate and lipolytic theories. The center of controversy was focused on the nature of the chemical moiety which penetrates the intestinal mucosal cell. It has been recognized for many years that the major dietary lipid is triacylglycerol. Munk’s hypothesis suggested that a limited hydrolysis of ingested triacylglycerols occurred and the product absorbed was primarily triacylglycerol in the form of fine emulsified particles. In contrast, Pfluger subscribed to the theory that ingested triacylglycerols must be completely hydrolyzed to glycerol and the respective fatty acids before their absorption. Pfluger’s strong influence dominated the concepts for the mechanism of fat absorption starting at the beginning of the century. These concepts were further supported by the investigations of Verzár and McDougall (1936), who suggested that the formation of a fatty-acid-bile-salt complex was an important process associated with the absorptive process.


Bile Salt Intestinal Mucosa Mixed Micelle Pancreatic Lipase Mucosal Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ailhaud, G., Samuel, D., Lazdunski, M., and Desnuelle, P. 1964. Quelques observations sur le mode d’action de la monoglyceride transacylase et de la diglyceride transacylase de la muqueuse intestinale. Biochim. Biophys. Acta 84:643–644.PubMedGoogle Scholar
  2. Arnesjo, B., and Grubb, A. as cited by Borgström, B. 1974. Fat digestion and absorption. Biomembranes 4B:556–620.Google Scholar
  3. Artom, C., and Reale, L. 1935. The formation of intermediate products in the pancreatic digestion of neutral fat. Arch. Sci. Biol, Bologna 21:368–380.Google Scholar
  4. Arvidson, G. A. E., and Nilsson, A. 1972. Formation of lymph chylomicron phosphatidylcholines in the rat during the absorption of safflower oil or triolein. Lipids 7:344–348.PubMedGoogle Scholar
  5. Ashworth, C. T., and Johnston, J. M. 1963. The intestinal absorption of fatty acid: a biochemical and electron microscopic study. J. Lipid Res. 4:454–460.PubMedGoogle Scholar
  6. Barrowman, J. A., and Darnton, S. J. 1970. The lipase of rat gastric mucosa. Gastroenterology 59:13–21.PubMedGoogle Scholar
  7. Bar-Tana, J., and Shapiro, B. 1964. Studies on palmitoyl-coenzyme A synthetase. Biochem. J. 93:533–538.PubMedGoogle Scholar
  8. Bavetta, L. A., Hallman, L., Deuel, H. J., and Greeley, P. O. 1941. The effect of adrenalectomy on fat absorption. Am. J. Physiol. 134:619–622.Google Scholar
  9. Belleville, J., and Clément, J. 1968. Comparaison de l’activité phospholipasique A de préparations du pancreas et du suc pancreatique sur les phospholipides liés aux lipoproteines dûr jaune d’oeuf et sur les phospholipides extraits due jaune d’oeuf. C. R.Acad. Sci. 266:959–962.Google Scholar
  10. Bernard, C. 1856. Mémoire sur le pancreas et sur le role du suc pancréatique dans la phénomenes digestifs, particulièrement dans la digestion des matières grasses neutres. Compt. Rend. Suppl. 43:379–563.Google Scholar
  11. Bickerstaffe, B., and Annison, E. F. 1969. Triglyceride synthesis by the small-intestinal epithelium of the pig, sheep, and chicken. Biochem. J. 111:419–429.PubMedGoogle Scholar
  12. Blomstrand, R., and Forsgren, L. 1967. Intestinal absorption and esterification of vitamin D3–1,2–3H in man. Acta Chem. Scand. 21:1662–1663.PubMedGoogle Scholar
  13. Blomstrand, R., and Forsgren, L. 1968. Vitamin K1–3H in man. Its intestinal absorption and transport in the thoracic duct lymph. Int. J. Vit. Res. 38:45–64.Google Scholar
  14. Borgström, B. 1954. On the mechanism of pancreatic lipolysis of glycerides. Biochim. Biophys. Acta 13:491–504.PubMedGoogle Scholar
  15. Borgström, B. 1955. Studies on pancreatic lipase, pp. 179–186. In G. Popjakand, E. L. Breton (eds.). Biochemical Problems of Lipids. Butterworth, London.Google Scholar
  16. Borgström, B. 1974. Fat digestion and absorption. Biomembranes 4B:556–620.Google Scholar
  17. Brindley, D. N. 1974. The intracellular phase of fat absorption. Biomembranes 4B:621–671.PubMedGoogle Scholar
  18. Brindley, D. N., and Ferner, P. 1972. Factors affecting acyl-CoA synthetase and glycerolipid synthesis in the small intestine, pp. 219–229. In W. L. Burland and P. D. Samuel (eds.) Transport Across the Intestine. Churchills, London.Google Scholar
  19. Brindley, D. N., and Hübscher, G. 1965. The intracellular distribution of the enzymes catalyzing the biosynthesis of glycerides in the intestinal mucosa. Biochim. Biophys. Acta 106:495–509.PubMedGoogle Scholar
  20. Brindley, D. N., and Hübscher, G. 1966. The effect of chain length on the activation and subsequent incorporation of fatty acids into glycerides by the small intestinal mucosa. Biochim. Biophys. Acta 125:92–105.PubMedGoogle Scholar
  21. Brockerhoff, H. 1974. Regulation of enzyme activity by enzyme orientation: A hypothesis. Bioorg. Chem. 3:176–183Google Scholar
  22. Brockerhoff, H., and Jensen, R. G. 1974. Lipolytic Enzymes. Academic Press, Inc., New York, 330 pp.Google Scholar
  23. Brown, J. L., and Johnston, J. M. 1964a. The mechanism of intestinal utilization of monoglyc-erides. Biochim. Biophys. Acta 84:264–274.PubMedGoogle Scholar
  24. Brown, J. L., and Johnston, J. M. 1964b. The utilization of 1- and 2-monoglycerides for intestinal triglyceride biosynthesis. Biochim. Biophys. Acta 84:448–457.PubMedGoogle Scholar
  25. Brown, M. S., Faust, J. R., and Goldstein, J. L. 1975. Role of the low density lipoprotein receptor in regulating the content of free and esterified cholesterol in human fibroblasts. J. Clin. Invest. 55:783–793.PubMedGoogle Scholar
  26. Cardell, R. R., Badenhausen, S., and Porter, K. R. 1967. Intestinal triglyceride absorption in the rat. An electron microscopical study. J. Cell Biol. 34:123–156.PubMedGoogle Scholar
  27. Cayen, M. N. 1971. Effect of dietary tomatine on cholesterol metabolism in the rat. J. Lipid Res. 12:482–490.PubMedGoogle Scholar
  28. Clark, B., and Hübscher, G., 1961. Biosynthesis of glycerides in subcellular fractions of intestinal mucosa. Biochim. Biophys. Acta 46:479–494.PubMedGoogle Scholar
  29. Clark, B., and Hübscher, G. 1963. Monoglyceride transacylase of rat-intestinal mucosa. Biochim. Biophys. Acta 70:43–52.PubMedGoogle Scholar
  30. Clément, G. 1964. La digestion et l’absorption des graisses. J. Physiol. (Paris) 56:111–192.Google Scholar
  31. Cohen, M., Morgan, R. G. H., and Hofmann, A. F. 1968. The lipolytic activity of human gastric juice. Fed. Proc. 27:574.Google Scholar
  32. Coleman, R., and Hübscher, G. 1962. Metabolism of phospholipids. V. Studies of phosphatidic acid phosphatase. Biochim. Biophys. Acta 56:479–490.PubMedGoogle Scholar
  33. Coniglio, J. G., and Cate, D. L. 1958. The distribution and biosynthesis of palmitic and stearic acids in liver, intestine, and carcass of intact normal fasted rats. J. Biol. Chem. 232:361–368.PubMedGoogle Scholar
  34. Dainty, J. 1963. Water relations of plant cells. Adv. Botan. Res. 1:279–282.Google Scholar
  35. David, J. S. K., and Ganguly, J. 1967. Further studies on the mechanism of absorption of vitamin A and cholesterol. Indian J. Biochem. 4:14–17.PubMedGoogle Scholar
  36. De Haas, G. H., Postema, N. M., Nieuwenhuizen, W., and Van Deenan, L. L. M. 1968. Purification and properties of an anionic zymogen of phospholipase A from porcine pancreas. Biochim. Biophys. Acta 159:118–129.PubMedGoogle Scholar
  37. De Haas, G. H., Slotboom, A. J., Bonsen, P. P. M., Nieuwenhuizen, W., Van Deenen, L. L. M., Maroux, S., Dlouha, V., and Desnuelle, P. 1970. Studies on phospholipase A and its zymogen from porcine pancreas. II. The assignment of the position of the six disulfide bridges. Biochim. Biophys. Acta 221:54–61.PubMedGoogle Scholar
  38. De Luca, H. F. 1974. Vitamin D: the vitamin and the hormone. Fed. Proc. 33:2211–2219.Google Scholar
  39. Dermer, G. B. 1968. An autoradiographic and biochemical study of oleic acid absorption by intestinal slices including determinations of lipid loss during preparation for electron microscopy. J. Ultrastruct. Res. 22:312–325.PubMedGoogle Scholar
  40. Desnuelle, P. 1968. Pancreatic lipase. Handbk. Physiol. 5:2629–2636.Google Scholar
  41. Dietschy, J. M. 1968a. Mechanisms for the intestinal absorption of bile acids. J. Lipid Res. 9:297–309.PubMedGoogle Scholar
  42. Dietschy, J. M. 1968b. The role of bile salts in controlling the rate of intestinal cholesterogene-sis. J. Clin. Invest. 47:286–300.PubMedGoogle Scholar
  43. Dietschy, J. M. 1969. The role of the intestine in the control of cholesterol metabolism. Gastroenterology 57:461–464.PubMedGoogle Scholar
  44. Dietschy, J. M., and Siperstein, M. D. 1965. Cholesterol synthesis by the gastrointestinal tract; localization and mechanisms of control. J. Clin. Invest. 44:1311–1327.PubMedGoogle Scholar
  45. Dietschy, J. M., and Wilson, J. D. 1968. Cholesterol synthesis in the squirrel monkey:relative rates of synthesis in various tissues and mechanisms of control. J. Clin. Invest. 47:166–174.PubMedGoogle Scholar
  46. Dietschy, J. M., Sallee, V. L., and Wilson, F. A. 1971. Unstirred water layers and absorption across the intestinal mucosa. Gastroenterology 61:932–934.PubMedGoogle Scholar
  47. Dobbins, W. O. 1966. An ultrastructural study of the intestinal mucosa in congenital β -lipoprotein deficiency with particular emphasis upon the intestinal absorptive cell. Gastroenterology 50:195–210.Google Scholar
  48. Dobbins, W. O.1969. Morphologic aspects of lipid absorption. Am. J. Clin. Nutr. 22:257–265.PubMedGoogle Scholar
  49. Drummond, J. C., Bell, M. E., and Palmer, E. T. 1935. Observations on absorption of carotene and vitamin A. Br. Med. J. 1:1208–1210.PubMedGoogle Scholar
  50. Entressangles, B., and Desnuelle, P. 1968. Action of pancreatic lipase on aggregated glyceride molecules in an isotropic system. Biochim. Biophys. Acta 159:285–295.PubMedGoogle Scholar
  51. Erlanson, C. and Borgström, B. 1968. The identity of vitamin A esterase activity of rat pancreatic juice. Biochim. Biophys. Acta 167:629–631.PubMedGoogle Scholar
  52. Erlanson, C., Fernlund, P., and Borgström, B. 1973. Purification and characterization of two proteins with co-lipase activity from porcine pancreas. Biochim. Biophys. Acta 310:437–445.PubMedGoogle Scholar
  53. Erlanson, C., Charles, M., Astier, M., and Desnuelle, P. 1974. The primary structure of co-lipase II. Biochim. Biophys. Acta. 359:198–203.PubMedGoogle Scholar
  54. Forstner, G. G., Riley, E. M., Daniels, S. J., and Isselbacher, K. J. 1965. Demonstration of glyceride synthesis by brush borders of intestinal epithelial cells. Biochem. Biophys. Res. Commun. 21:83–88.PubMedGoogle Scholar
  55. Frank, O. 1898. Zür Lehre von der Fettresorption. Z Biol. 36:568–593.Google Scholar
  56. Franks, J. J., Riley, E. M., and Isselbacher, K. J. 1966. Synthesis of fatty acids by rat intestine in vitro. Proc. Soc. Exp. Biol. Med. 121:322–327.Google Scholar
  57. Frazer, A. C. 1938. Fat absorption and metabolism. Analyst 63:308–314.Google Scholar
  58. Frazer, A. C., and Sammons, H. G. 1945. The formation of mono- and diglycerides during the hydrolysis of triglycerides by pancreatic lipase. Biochem. J. 39:122–128.PubMedGoogle Scholar
  59. Freudenberg, E. 1966. A lipase in the milk of the gorilla. Experientia 22:317.PubMedGoogle Scholar
  60. Gagnon, M., and Dawson, A. M. 1968. The effect of bile on vitamin A absorption in the rat. Proc. Soc. Exp. Biol. Med. 127:99–102.PubMedGoogle Scholar
  61. Gallo, L., and Treadwell, C. R. 1970. Localization of the monoglyceride pathway in subcellular fractions of rat intestinal mucosa. Arch. Biochem. Biophys. 141:614–621.PubMedGoogle Scholar
  62. Gangl, A., and Ockner, R. K. 1975. Intestinal metabolism of lipids and lipoproteins. Gastroenterology 68:167–186.PubMedGoogle Scholar
  63. Ganguly, J. 1969. Absorption of vitamin A. Am. J. Clin. Nutr. 22:923–933.PubMedGoogle Scholar
  64. Gelb, A. M., Davidson, M. I., and Kessler, J. I. 1964. Effect of fasting on esterification of fatty acids by the small intestine in vitro. Am. J. Physiol. 207:1207–1210.PubMedGoogle Scholar
  65. Glickman, R. M. 1976. Chylomicron formation by the intestine. In K. Rommil (ed.). Biochemical and Clinical Aspects of Lipid Absorption. Titisee. F. K. Schattauer Verlag, Stuttgart-New York.Google Scholar
  66. Glickman, R. M., and Kirsch, K. 1973. Lymph chylomicron formation during the inhibition of protein synthesis. J. Clin. Invest. 52:2910–2920.PubMedGoogle Scholar
  67. Glickman, R. M., Kirsch, K., and Isselbacher, K. J. 1972. Fat absorption during inhibition of protein synthesis; studies of lymph chylomicrons. J. Clin. Invest. 51:356–363.PubMedGoogle Scholar
  68. Glover, J., and Morton, R. A. 1958. The absorption and metabolism of sterols. Br. Med. Bull. 14:226–233.PubMedGoogle Scholar
  69. Goodman, D. S., Huang, H. S., and Shiratori, T. 1966. Mechanism of the biosynthesis of vitamin A from β -carotene. J. Biol. Chem. 241:1929–1932.PubMedGoogle Scholar
  70. Gordon, S. 1963. The role of bile salts in absorption and metabolism of fatty acid and monoglyceride by hamster jejunum. Dissertation.Google Scholar
  71. Gordon, S. G. and Kern, F. 1968. The absorption of bile salt and fatty acid by hamster small intestine. Biochim. Biophys. Acta. 152:372–378.PubMedGoogle Scholar
  72. Gould, R. G., Taylor, C. B., Hagerman, J. S., Warner, I., and Campbell, D. J. 1953. Cholesterol metabolism: I. Effect of dietary cholesterol on the synthesis of cholesterol in dog tissue in vitro. J. Biol. Chem. 201:519–528.PubMedGoogle Scholar
  73. Gould, R. G., Jones, R. J., Leroy, G. V., Wissler, R. W. and Taylor, C. B. 1969. Absorbability of β -sitosterol in humans. Metabolism 18:652–662.PubMedGoogle Scholar
  74. Gronowska-Senger, A., and Wolf, G. 1970. Effect of dietary protein on the enzyme from rat and human intestine which connects β -carotene to retinal. J. Nutr. 100:300–308.PubMedGoogle Scholar
  75. Grundy, S. M., and Ahrens, E. H. 1969. Measurements of cholesterol turnover, synthesis and absorption in man, carried out by isotope, kinetic, and sterol balance methods. J. Lipid Res. 10:91–107.PubMedGoogle Scholar
  76. Gurr, M. I., Brindley, D. N., and Hübscher, G. 1965. Metabolism of phospholipids VIII. Biosynthesis of phosphatidylcholine in the intestinal mucosa. Biochim. Biophys. Acta 98:486–501.PubMedGoogle Scholar
  77. Hajra, A. K., and Agranoff, B. W. 1968a. Characterization of a 32P-labeled lipid from guinea pig liver mitochondria. J. Biol Chem. 243:1617–1622.PubMedGoogle Scholar
  78. Hajra, A. K. and Agranoff, B. W. 1968b. Reduction of palmitoyl dihydroxyacetone phosphate by mitochondria. J. Biol. Chem. 243:3542–3543.PubMedGoogle Scholar
  79. Hamosh, M., and Scow, R. O. 1973. Lingual lipase and its role in the digestion of dietary lipid. J. Clin. Invest. 52:88–95.PubMedGoogle Scholar
  80. Hamosh, M., Klaeveman, H. L., Wolf, R. O., and Scow, R. O. 1975. Pharyngeal lipase and digestion of dietary triglyceride in man. J. Clin. Invest. 55:908–913.PubMedGoogle Scholar
  81. Hatch, F. T., Hagopian, L. M., Rubenstein, J. J., and Canellos, G. P. 1963. Incorporation of labeled leucine into lipoprotein protein by rat intestinal mucosa (P). Circulation 28: 659.Google Scholar
  82. Hatch, F. T., Yashiro, A., Hagopian, L. M., and Rubenstein, J. J. 1966. Biosynthesis of lipoprotein by rat intestinal mucosa. J. Biol. Chem. 241:1655–1665.PubMedGoogle Scholar
  83. Hernandez, H. H., Chaikoff, I. L., and Kiyasu, J. Y. 1955. Role of pancreatic juice in cholesterol absorption. Am. J. Physiol. 181:523–526.PubMedGoogle Scholar
  84. Hernell, O., and Olivecrona, T. 1974. Human milk lipases II. Bile salt-stimulated lipase. Biochim. Biophys. Acta 369:234–244.PubMedGoogle Scholar
  85. Hewitt, W. 1954. A histochemical study of fat absorption in the small intestine of the rat. Q. J. Microsc. Sci. 95:153–157.Google Scholar
  86. Higgins, J. A., and Barnett, R. J. 1971. Fine structural localization of acyltransferases. The monoglyceride and α-glycerophosphate pathways in intestinal absorptive cells. J. Cell. Biol. 50:102–120.PubMedGoogle Scholar
  87. Hoffman, N. E., Simmonds, W. J., and Morgan, R. G. H. 1971. A comparison of absorption of free fatty acid and α-glyceryl ether in the presence and absence of a micellar phase. Biochim. Biophys. Acta 231:487–495.PubMedGoogle Scholar
  88. Hofmann, A. F. 1964. Micelle formation and intestinal absorption. Dissertation, Lund.Google Scholar
  89. Hofmann, A. F., and Small, D. S. 1967. Detergent properties of bile salts: Correlation with physiological function. Ann. Rev. Med. 18:333–376.PubMedGoogle Scholar
  90. Holt, P. R., Haessler, H. A., and Isselbacher, K. J. 1965. Effect of lipid absorption on glucose metabolism by slices of hamster small intestine. Am. J. Physiol. 208:324–328.PubMedGoogle Scholar
  91. Hoving, J., and Valkema, A. J., 1969. Effect of dietary fat content on the site of fat absorption in hamster small intestine in vitro. Biochim. Biophys. Acta 187:53–58.PubMedGoogle Scholar
  92. Hübscher, G. 1970. Glyceride metabolism, pp. 280–370. In S.J. Wakil (ed.). Lipid Metabolism. Academic Press, Inc., New York.Google Scholar
  93. Hyams, D. E., Sabesin, S. M., Greenberger, N. J., and Isselbacher, K. J. 1966. Inhibition of intestinal protein synthesis and lipid transport by ethionine. Biochim. Biophys. Acta 125:166–173.PubMedGoogle Scholar
  94. Iemhoff, W. G. J., and Hülsmann, W. C. 1971. Development of mitrochondrial enzyme activities in rat-small-intestinal epithelium. Eur. J. Biochem. 23:429–434.PubMedGoogle Scholar
  95. Isselbacher, K. J. 1965. Metabolism and transport of lipid by intestinal mucosa. Fed. Proc. 24:16–22.PubMedGoogle Scholar
  96. Jaques, L. B., Millar, G. L., and Spinks, J. W. T. 1954. The metabolism of the K-vitamins. Schweiz. Med. Wschr. 84:792–796.PubMedGoogle Scholar
  97. Jedeikin, L. A., and Weinhouse, S. 1954. Studies of the incorporation of palmitate-1-C14 into tissue lipids in vitro. Arch Biochem. Biophys. 50:134–147.PubMedGoogle Scholar
  98. Jersild, R. A. 1966. A time sequence study of fat absorption in the rat jejunum. Am. J. Anat. 118:135–162.PubMedGoogle Scholar
  99. Jersild, R. A. 1969. A comparison of fat absorption in the jejunum and ileum. Anat. Rec. 163:204–205.Google Scholar
  100. Johnston, J. M. 1959. The absorption of fatty acids by the isolated intestine. J. Biol. Chem. 234:1065–1067.PubMedGoogle Scholar
  101. Johnston, J. M. 1963. Recent developments in the mechanism of fat absorption. Adv. Lipid Res. 1:105–131.PubMedGoogle Scholar
  102. Johnston, J. M. 1967. Mechanism of fat absorption. Handbk. Physiol. 3:1353–1375.Google Scholar
  103. Johnston, J. M. 1969. Assimilation, distribution, and storage. Compr. Biochem. 18:1–18.Google Scholar
  104. Johnston, J. M. 1976. Triglyceride biosynthesis in the intestinal mucosa, pp. 38–42. In K. Rommil (ed.). Biochemical and Clinical Aspects of Lipid Absorption. Titisee. F. K. Schattauer Verlag, Stuttgart, New York.Google Scholar
  105. Johnston, J. M., and Bearden, J. H. 1962. Intestinal phosphatidate phosphatase. Biochim. Biophys. Acta 56:365–367.PubMedGoogle Scholar
  106. Johnston, J. M., and Borgström, B. 1964. The intestinal absorption and metabolism of micellar solutions of lipids. Biochim. Biophys. Acta 84:412–423.PubMedGoogle Scholar
  107. Johnston, J. M., and Brown, J. L. 1962a. The intestinal utilization of doubly labeled α-monopalmitin. Biochim. Biophys. Acta 59:500–501.PubMedGoogle Scholar
  108. Johnston, J. M., and Brown, J. L. 1962b. Intestinal utilization of monoglycerides. pp. 211–216. In A. C. Frazer (ed.). Biochemical Problems of Lipids. Elsevier Publishing Co., New York.Google Scholar
  109. Johnston, J. M., and Rao, G. A. 1965. Triglyceride biosynthesis in the intestinal mucosa. Biochim. Biophys. Acta 106:1–9.PubMedGoogle Scholar
  110. Johnston, J. M., Rao, G. A., and Reistad, R. 1965. Species difference in the synthesis of triglycerides from monoglycerides. Biochim. Biophys. Acta 98:432–434.PubMedGoogle Scholar
  111. Johnston, J. M., Rao, G. A., Lowe, P. A., and Schwarz, B. E. 1967a. The nature of the stimulatory role of the supernatant fraction on triglyceride synthesis by the α-glycerophosphate pathway. Lipids 2:14–20.PubMedGoogle Scholar
  112. Johnston, J. M., Rao, G. A., and Lowe, P. A. 1967b. The separation of the α-glycerophosphate and monoglyceride pathways in the intestinal biosynthesis of triglycerides. Biochim. Biophys. Acta 137:578–580.PubMedGoogle Scholar
  113. Johnston, J. M., Paltauf, F., Schiller, C. M., and Schultz, L. D. 1970. The utilization of the α-glycerophosphate and monoglyceride pathways for phosphatidylcholine biosynthesis in the intestine. Biochim. Biophys. Acta 218:124–133.PubMedGoogle Scholar
  114. Karvinen, E., and Miettinen, M. 1966. Effect of ethionine on the absorption of palmitic acid-1-C14 in the rat. Acta Physiol. Scand. 68:228–230.Google Scholar
  115. Kern, F., and Borgström, B. 1965. Quantitative study of the pathways of triglyceride synthesis by hamster intestinal mucosa. Biochim. Biophys. Acta 98:520–531.PubMedGoogle Scholar
  116. Kornberg, A., and Pricer, W. E. 1953. Enzymatic synthesis of the coenzyme A derivatives of long chain fatty acids. J. Biol. Chem. 204:329–343.PubMedGoogle Scholar
  117. Levi, A. J., Gatmaitan, Z., and Arias, I. M. 1969. Two hepatic cytoplasmic protein fractions, Y and Z, and their possible role in the hepatic uptake of bilirubin sulfobromophthalein, and other anions. J. Clin. Invest. 48:2156–2167.PubMedGoogle Scholar
  118. MacMahon, M. T., and Thompson, G. R. 1970. Comparison of the absorption of a polar lipid, oleic acid, and a non-polar lipid, α-tocopherol from mixed micellar solutions and emulsions. Eur. J. Clin. Invest. 1:161–166.PubMedGoogle Scholar
  119. Mansbach, C. M. II. 1973. Complex lipid synthesis in hamster intestine. Biochim. Biophys. Acta 296:386–400.PubMedGoogle Scholar
  120. McManus, J. P. A., and Isselbacher, K. J. 1970. Effect of fasting versus feeding on the rat small intestine. Gastroenterology 59:214–221.PubMedGoogle Scholar
  121. Mishkin, S., Stein, L., Gatmaitan, Z., and Arias, I. M. 1972. The binding of fatty acids to cytoplasmic proteins: binding to Z protein in liver and other tissues of the rat. Biochem. Biophys. Res. Commun. 47:997–1003.PubMedGoogle Scholar
  122. Mitchell, M. P., Brindley, D. N., and Hübscher, G. 1971. Properties of phosphatidate phosphohydrolase. Eur. J. Biochem. 18:214–220.PubMedGoogle Scholar
  123. Moffa, D. J., Lotspeich, F. J., and Krause, R. F. 1970. Preparation and properties of retinal-oxidizing enzyme from rat intestinal mucosa. J. Biol. Chem. 245:439–447.PubMedGoogle Scholar
  124. Munk, I. 1900, Zur Frage der Fettesorption. Z. Physiol. 14:121–125.Google Scholar
  125. Murthy, S. K., Mahadevan, S., and Ganguly, J. 1961. High cholesterol diet and esterification of cholesterol by the intestinal mucosa of rats. Arch. Biochem. Biophys. 95:176–180.PubMedGoogle Scholar
  126. Negrel, R., and Ailhaud, G. 1975. Localization of the monoglyceride pathway enzymes in the villous tips of intestinal cells and their absence from the brush-border. FEBS Lett. 54:183–188.PubMedGoogle Scholar
  127. Nilsson, A. 1968. Metabolism of sphingomyelin in the intestinal tract of the rat. Biochim. Biophys. Acta 164:575–584.PubMedGoogle Scholar
  128. Nilsson, A. 1969. The presence of sphingomyelin-and ceramide-cleaving enzymes in the small intestinal tract. Biochim. Biophys. Acta 176:339–347.PubMedGoogle Scholar
  129. Ockner, R. K., Pittman, J. P., and Yager, J. L. 1972a. Differences in the intestinal absorption of saturated and unsaturated long chain fatty acids. Gastroenterology 62:981–992.PubMedGoogle Scholar
  130. Ockner, R. K., Manning, J. M., Poppenhausen, R. B., and Ho, W. K. L. 1972b. A binding protein for fatty acids in cytosol of intestinal mucosa, liver, myocardium, and other tissues. Science 177:56–58.PubMedGoogle Scholar
  131. O’Doherty, P. J. A., Yousef, J. M. and Kuksis, A. 1972. Differential effect of puromycin on triglyceride and phospholipid biosynthesis in isolated mucosal cells. Fed. Proc. 31: A701.Google Scholar
  132. O’Doherty, P. J. A., Kakis, G., and Kuksis, A. 1973. Role of luminal lecithin in intestinal fat absorption. Lipids 8:249–255.PubMedGoogle Scholar
  133. Palay, S. L., and Karlin, L. J. 1959. An electron microscope study of the intestinal villus. 2. The pathway of fat absorption. J. Biophys. Biochem. Cytol. 5:373–384.PubMedGoogle Scholar
  134. Paltauf, F., and Johnston, J. M. 1971. The metabolism in vitro of enantiomeric 1–0-alkyl glycerols and 1,2-and 1,3-alkyl acyl glycerols in the intestinal mucosa. Biochim. Biophys. Acta 239:47–56.PubMedGoogle Scholar
  135. Paltauf, F., Esfandi, F., and Holasek, A. 1974. Sterospecificity of lipases. Enzyme hydrolysis of enantiomeric alkyl diacylglycerols by lipoprotein lipase, lingual lipase and pancreatic lipase. FEBS Lett. 40:119–123.PubMedGoogle Scholar
  136. Pflüger, E. 1900. Der gegenwartige Zustand der Lehr von der Verdauung und Resorption der Fette und ein Verurteilung der hiermit ver knüpften physiologischen Vivisectionen am Menschen. Arch. Ges. Physio. 82:303–380.Google Scholar
  137. Polheim, D., David, J. S. K., Schultz, F. M., Wylie, M. B., and Johnston, J. M. 1973. Regulation of triglyceride biosynthesis in adipose and intestinal tissue. J. Lipid Res. 14:415–421.PubMedGoogle Scholar
  138. Policard, A. 1969. Sur les mécanismes cytophysiologiques de l’absorption des lipides par la muqueuse intestinale. Presse Med. 77:1028.Google Scholar
  139. Pope, J. L., McPherson, J. C., and Tidwell, H. C. 1966. A study of a monoglyceride-hydrolyzing enzyme of intestinal mucosa. J. Biol. Chem. 241:2306–2310.PubMedGoogle Scholar
  140. Porte, D., Jr., and Entenman, C. 1965. Fatty acid metabolism in segments of rat intestine. Am. J. Physiol. 208:607–614.PubMedGoogle Scholar
  141. Porter, H. P., and Saunders, D. R. 1971. Isolation of the aqueous phase of human intestinal contents during the digestion of a fatty meal. Gastroenterology 60:997–1007.PubMedGoogle Scholar
  142. Powell, G. K., and McElveen, M. A. 1974. Effect of prolonged fasting on fatty acid re-esterification in rat intestinal mucosa. Biochim. Biophys. Acta 369:8–15.PubMedGoogle Scholar
  143. Rao, G. A., and Johnston, J. M. 1966a. The involvement of bound-CoA in glyceride biosynthesis. Biochem. Biophys. Res. Commun. 24:696–700.PubMedGoogle Scholar
  144. Rao, G. A., and Johnston, J. M. 1966b. Purification and properties of triglyceride synthetase from the intestinal mucosa. Biochim. Biophys. Acta 125:465–473.PubMedGoogle Scholar
  145. Rao, G. A., and Johnston, J. M. 1967. Studies of the formation and utilization of bound CoA in glyceride biosynthesis. Biochim. Biophys. Acta 144:25–33.PubMedGoogle Scholar
  146. Rao, G. A., Sorrels, M. F., and Reiser, R. 1970. Biosynthesis of triglycerides from triose phosphates by microsomes of intestinal mucosa. Lipids 5:762–764.PubMedGoogle Scholar
  147. Reiser, R., and Williams, M. C. 1953. Dihydroxyacetone esters as precursors of triglycerides during intestinal absorption. J. Biol. Chem. 202:815–819.PubMedGoogle Scholar
  148. Robbins, S. J., Small, D. M., and Donaldson, R. M. 1969. Triglyceride formation in intestinal microvillous membranes during fat absorption. J. Clin. Invest. 48:69A.Google Scholar
  149. Robbins, S. J., Small, D. M., Trier, J. S., and Donaldson, R. M., Jr. 1971. Localization of fatty acid re-esterification in the brush border region of intestinal absorptive cells. Biochim. Biophys. Acta 233:550–561.Google Scholar
  150. Rodgers, J. B. 1975. Lipid absorption in bile fistula rats. Lack of a requirement for biliary lecithin. Biochim. Biophys. Acta 398:92–100.PubMedGoogle Scholar
  151. Rodgers, J. B. and Bochenek, W. 1970. Localization of lipid re-esterifying enzymes of the rat small intestine. Effects of jejunal removal on ileal enzyme activities. Biochim. Biophys. Acta 202:426–435.PubMedGoogle Scholar
  152. Rodgers, J. B., Riley, E. M., Drummey, G. D., and Isselbacher, K. J. 1967. Lipid absorption in adrenalectomized rats: The role of altered enzyme activity in the intestinal mucosa. Gastroenterology 53:547–556.PubMedGoogle Scholar
  153. Sabesin, S. M., and Isselbacher, K. J. 1965. Protein synthesis inhibition: Mechanism for the production of impaired fat absorption. Science 147:1149–1151.PubMedGoogle Scholar
  154. Schachter, D., Finkelstein, J. D., and Kowarski, S. 1964. Metabolism of vitamin D and its intestinal absorption in the rat. J. Clin. Invest. 43:787–796.PubMedGoogle Scholar
  155. Schiller, C. M., David, J. S. K. and Johnston, J. M. 1970. The subcellular distribution of triglyceride synthetase in the intestinal mucosa. Biochim. Biophys. Acta 210:489–492.PubMedGoogle Scholar
  156. Schonheyder, F., and Volqvartz, K. 1946. The gastric lipase in man. Acta Physiol. Scand. 11:349–360.Google Scholar
  157. Schultz, F. M., and Johnston, J. M. 1971. The synthesis of higher glycerides via the monoglyc-eride pathway in hamster adipose tissue. J. Lipid Res. 12:132–138.PubMedGoogle Scholar
  158. Schultz, F. M., Wylie, M. B., and Johnston, J. M. 1971. The relationship between the monoglyceride and glycerol-3-phosphate pathways in adipose tisse. Biochem. Biophys. Res. Commun. 45:246–250.PubMedGoogle Scholar
  159. Scow, R. O., Stein, Y., and Stein, O., 1967. Incorporation of dietary lecithin and lysoleci-thin into lymph chylomicrons in the rat. J. Biol. Chem. 242:4919–4925.PubMedGoogle Scholar
  160. Senior, J. R. 1964. Intestinal absorption of fats. J. Lipid Res. 5:495–521.PubMedGoogle Scholar
  161. Shefer, S., Hauser, S., Lapar, V., and Mosbach, E. H. 1972. HMG CoA reductase of intestinal mucosa and liver of the rat. J. Lipid Res. 13:402–412.PubMedGoogle Scholar
  162. Shefer, S., Hauser, S., Lapar, V., and Mosbach, E. H. 1973. Regulatory effects of dietary sterols and bile acids on rat intestinal HMG CoA reductase. J. Lipid Res. 14:400–405.PubMedGoogle Scholar
  163. Short, V. J., Dils, R., and Brindley, D. N. 1975. Enzymes of glycerolipid synthesis in small intestinal mucosa of foetal and neonatal guinea pigs. Biochem. J. 152:675–679.PubMedGoogle Scholar
  164. Simmonds, W. J., Hofmann, A. F., and Theodor, E. J. 1967. Absorption of cholesterol from a micellar solution: Intestinal perfusion studies in man. J. Clin. Invest. 46:874–890.PubMedGoogle Scholar
  165. Skipski, V. P., Morehouse, M. G., and Deuel, H. J. Jr. 1959. The absorption in the rat of a 1,3-dioleyl-2-deuteriostearyl glyceride-C14 and a 1-monodeuteriostearyl glyceride-C14. Arch. Biochem. Biophys. 81:93–104.PubMedGoogle Scholar
  166. Small, D. S. 1968. A classification of biologic lipids based upon their interaction in aqueous systems. J. Am. Oil Chem. Soc. 45:108–119.PubMedGoogle Scholar
  167. Smith, M. E., Sedgwick, B., Brindley, D. N., and Hübscher, G. 1967. The role of phosphati-date phosphohydrolase in glyceride biosynthesis. Eur. J. Biochem. 3:70–77.PubMedGoogle Scholar
  168. Stein, Y., Tietz, A., and Shapiro, B. 1957. Glyceride synthesis of rat liver mitochondria. Biochim. Biophys. Acta 26:286–293.PubMedGoogle Scholar
  169. Strauss, E. W. 1966. Electron microscopic study of intestinal fat absorption in vitro from mixed micelles containing linolenic acid, monoolein, and bile salt. J. Lipid Res. 7:307–323.PubMedGoogle Scholar
  170. Subbaiah, P. V., Raghavan, S. S. and Ganguly, J. 1968. Further studies on the intestinal absorption of triglycerides and fatty acids in rats. Indian J. Biochem. 5:147–152.PubMedGoogle Scholar
  171. Suzuki, R. 1968. Specific requirement of bile salts for absorption of cholesterol from the intestine. Keio J. Med. 17:169–187.PubMedGoogle Scholar
  172. Swell, L., Trout, E. C. Jr., Hopper, J. R., Field, H. Jr., and Treadwell, C. R. 1958. Specific function of bile salts in cholesterol absorption. Proc. Soc. Exp. Biol. Med. 98:174–176.PubMedGoogle Scholar
  173. Swell, L., Law, M. D., and Treadwell, C. R. 1965. Absorption of α- and β -octadecyl glyceryl ethers. Arch. Biochem. Biophys. 110:231–236.PubMedGoogle Scholar
  174. Sylven, C., and Borgström, B. 1968. Absorption and lymphatic transport of cholesterol in the rat. J. Lipid Res. 9:596–601.PubMedGoogle Scholar
  175. Tame, M. J., and Dils, R. 1967. Fatty acid synthesis in intestinal mucosa of guinea pig. Biochem. J. 105:709–716.PubMedGoogle Scholar
  176. Tandon, R., Edwards, R. H., and Rodgers, J. B., 1972. Effects of bile diversion on the lipid re-esterifying capacity of the rat small bowel. Gastroenterology 63:990–1003.PubMedGoogle Scholar
  177. Thompson, G. R., Ockner, R. K., and Isselbacher, K. J. 1969. Effect of mixed micellar lipid on the absorption of cholesterol and vitamin D3 into lymph. J. Clin. Invest. 48:87–95.PubMedGoogle Scholar
  178. Treadwell, C. R., and Vahouny, G. V. 1968. Cholesterol absorption. Handbk. Physiol. 3:1407–1438.Google Scholar
  179. Vahouny, G. V., Weersing, S., and Treadwell, C. R. 1965. Function of specific bile acids in cholesterol esterase activity in vitro. Biochim. Biophys. Acta 98:607–616.PubMedGoogle Scholar
  180. VerzÅr, F., and Laszt, L. 1934. Untersuchungen über die Resorption von Fettsäuren. Biochem. Z. 270:24–34.Google Scholar
  181. VerzÅr, F., and McDougall, E. J. 1936. Absorption from the Intestine. Longmans, Green, London, pp. 150–211.Google Scholar
  182. Vodavar, N., Massicard, N., and Flanzy, J. 1968. Formation et rôle des chylomicrons au cours de l’absorption des acides gras à chaîne longue. C. R. Acad. Sci. Paris 266:814–817.Google Scholar
  183. Volhard, F. 1900. Über Resorption and Fettspaltung im Magen. München Med. Wschr. 47:141–146.Google Scholar
  184. Watson, W. C., and Murray, E. 1966. Fat digestion and absorption in the adrenalectomized rat. J. Lipid Res. 7:236–241.PubMedGoogle Scholar
  185. Webb, J. P. W., Hamilton, J. D., and Dawson, A. M. 1969. A physicochemical study of fat absorption in rats limitation of methods in vitro. Biochim. Biophys. Acta 187:42–52.PubMedGoogle Scholar
  186. Weis, H. J., and Dietschy, J. M. 1969. Failure of bile acids to control hepatic cholesterogene-sis:evidence for endogenous cholesterol feedback. J. Clin. Invest. 48:2398–2408.PubMedGoogle Scholar
  187. Weiss, S. B., and Kennedy, E. P. 1956. The enzymatic synthesis of triglycerides. J. Am. Chem. Soc. 78:3550.Google Scholar
  188. Westergaard, H., and Dietschy, J. M. 1974. Normal mechanisms of fat absorption and derangements induced by various gastrointestinal diseases. Med. Clin. North Am. 58:1413–1427.PubMedGoogle Scholar
  189. Westergaard, H., and Dietschy, J. M. 1976. Delineation of the dimensions and permeability characteristics of two major diffusion barriers to passive mucosal uptake in the rabbit intestine. J. Clin. Invest. 58:97–108.PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1977

Authors and Affiliations

  • John M. Johnston
    • 1
  1. 1.Department of BiochemistryThe University of Texas Health Science Center at DallasDallasUSA

Personalised recommendations