Advertisement

Cardiac Muscle

  • John R. Gilbertson
Part of the Monographs in Lipid Research book series (MLR)

Abstract

The importance of fatty acids in the metabolism of cardiac muscle is well established (Neeley et al., 1972; Neeley and Morgan, 1974; Opie, 1968, 1969; Bing, 1965; Evans, 1939). These acids play diverse roles in the heart by contributing to the structure of the complex lipids, providing a substrate for energy production, and acting as biochemical modulators that affect a number of essential enzymes either directly or indirectly. The extent to which fatty acids are utilized for these functions varies with the oxygenation of this tissue and the availability of other competitive substrates. The discussion that follows will present some of the information that relates to these and other areas of lipid metabolism in this organ.

Keywords

Free Fatty Acid Cardiac Muscle Erucic Acid Ketone Body Fatty Acid Biosynthesis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allmann, D. W., Galzigna, L., McCaman, R. E., and Green, D. E. 1966. The membrane systems of the mitochondrion. IV. A localization of the fatty acid oxidizing system. Arch. Biochem. Biophys. 117:413–422.PubMedCrossRefGoogle Scholar
  2. Alousi, A. A., and Mallou, S. 1964. Effects of hyperthyrodism, epinephrine and diet on heart lipoprotein lipase activity. Am. J. Physiol. 206:603–609.PubMedGoogle Scholar
  3. Anderson, R. L. 1967. Oxidation of the geometric isomers of Δ9, Δ12 octadecadienoic acid by rat liver mitochondria. Biochim. Biophys. Acta 144:18–24.PubMedGoogle Scholar
  4. Anderson, R. L. 1968. Oxidation of geometric isomers of Δ9,12 octadecadienoic acid by rat liver mitochondria. Biochim. Biophys. Acta 152:531–538.PubMedGoogle Scholar
  5. Anthony, G. J., and Landau, B. R. 1968. Relative contributions of α, β and ω-oxidative pathways to in vitro fatty acid oxidation in rat liver. J. Lipid Res. 9:267–269.Google Scholar
  6. Apstein, C. S., Gmeiner, R., and Brachfeld, N. 1972. Effect of palmitate on hypoxic myocardial metabolism and contractibility. Recent Adv. Stud. Card. Struct. Metal. 1:136–146.Google Scholar
  7. Ballard, F. B., Danforth, W. H., Naegle, S., and Bing, R. J. 1960. Myocardial metabolism of fatty acids.J. Clin. Invest. 39:717–723.PubMedCrossRefGoogle Scholar
  8. Barth, C., Sladek, M., and Decker, K. 1971. The subcellular distribution of short-chain fatty acyl-CoA synthetase activity in rat tissues. Biochim. Biophys. Acta 248:24–33.PubMedGoogle Scholar
  9. Bassenge, E., Wendt, V. E., Schollmeyer, P., Blumchen, G., Gudbyarnson, S., and Bing, R. J. 1965. Effect of ketone bodies on cardiac metabolism. Am. J. Physiol. 208:162–168.PubMedGoogle Scholar
  10. Beattie, D. S. 1968. The submitochondrial distribution of the fatty acid oxidizing system in rat liver mitochondria. Biochem. Biophys. Res. Commun. 30:57–62.PubMedCrossRefGoogle Scholar
  11. Bell, O. E., and White, H. B. 1968. Plasmalogen metabolism in the developing rat brain: Aldehydes as direct precursors in the formation of the vinyl ether linkage. Biochim. Biophys. Acta 164:441–448.PubMedGoogle Scholar
  12. Bing, R. J. 1955. Myocardial metabolism. Circulation 12:635–647.PubMedGoogle Scholar
  13. Bing, R. J. 1965. Cardiac metabolism. Physiol. Rev. 45:171–213.PubMedGoogle Scholar
  14. Bing, R. J., Siegel, A., Ungar, I., and Gilbert, M. 1954. Metabolism of the human heart. Am. J. Med. 16:504–515.PubMedCrossRefGoogle Scholar
  15. Block, K. 1969. Enzymatic synthesis of monounsaturated fatty acids. Accounts Chem. Res. 2:193–202.CrossRefGoogle Scholar
  16. Blomstrand, R., and Svensson, L. 1974. Studies on phospholipids with particular reference to cardiolipin of rat heart after feeding rapeseed oil. Lipids 9:771–780.PubMedCrossRefGoogle Scholar
  17. Borensztajn, J., and Robinson, D. S. 1970. The effect of fasting on the utilization of chylomicron triglyceride fatty acids in relation to clearing factor lipase releasable by heparin in the perfused rat heart. J. Lipid Res. 11:111–117.PubMedGoogle Scholar
  18. Borensztajn, J., Otway, S., and Robinson, D. S. 1970. Effect of fasting on the clearing factor lipase activity of fresh and defatted preparations of rat heart muscle. J. Lipid Res. 11:102–110.PubMedGoogle Scholar
  19. Bremer, J. 1962a. Carnitine in intermediary metabolism. Reversible acetylation of carnitine by mitochondria.J. Biol. Chem. 237:2228–2231.PubMedGoogle Scholar
  20. Bremer, J. 1962b. Carnitine in intermediary metabolism. The metabolism of fatty acid esters of carnitine by mitochondria. J. Biol. Chem. 237:3618–3632.Google Scholar
  21. Bremer, J., and Norum, K. R. 1967. The mechanism of substrate inhibition of palmityl coenzyme A: Carnitine palmityltransferase by palmityl coenzyme A. J. Biol. Chem. 242:1744–1748.PubMedGoogle Scholar
  22. Bremer, J., and Wojtczak, A. B. 1972. Factors controlling the rate of fatty acid β-oxidation in rat liver mitochondria. Biochim. Biophys. Acta 280:515–530.PubMedGoogle Scholar
  23. Bressler, R. 1970. Physiological chemical aspects of fatty acid oxidation, pp. 49–77. In S. J. Wakil (ed.). Lipid Metabolism. Academic Press, New York.Google Scholar
  24. Challoner, D. R., and Steinberg, D. 1966a. Effect of free fatty acid on the oxygen consumption of the perfused rat heart. Am. J. Physiol. 210:280–286.PubMedGoogle Scholar
  25. Challoner, D. R., and Steinberg, D. 1966b. Oxidative metabolism of the myocardium as influenced by fatty acids and epinephrine.Am. J. Physiol. 211:897–902.Google Scholar
  26. Chase, J. F. A. 1965. The substrate specificity of carnitine acetyltransferase in rat tissue. J. Biol. Chem. 240:2193–2196.Google Scholar
  27. Christ, E. J., and Hülsmann, W. C. 1962. Synthesis of long-chain fatty acids by mitochondrial enzymes. Biochim. Biophys. Acta 60:72–79.CrossRefGoogle Scholar
  28. Christophersen, B. O., and Bremer, J. 1972. Erucic acid an inhibitor of fatty acid oxidation in the heart. Biochim. Biophys. Acta 280:506–514.PubMedGoogle Scholar
  29. Crass, M. F. 1972. Exogenous substrate effects on endogenous lipid metabolism in the working rat heart. Biochim. Biophys. Acta 280:71–81.PubMedGoogle Scholar
  30. Crass, M. F. III, and Meng, H. C. 1964. Serum requirements for release of heparin-induced lipase from perfused rat heart. Am. J. Physiol. 206:610–614.PubMedGoogle Scholar
  31. Crass, M. F., McCaskill, E. S., Shipp, J. C., and Murthy, V. K. 1971. Metabolism of endogenous lipids in cardiac muscle: Effect of pressure development. Am. J. Physiol. 220:428–435.PubMedGoogle Scholar
  32. Dahlen, J. V., and Porter, J. W. 1968. Studies on the synthesis of fatty acids by a beef heart mitochondrial enzyme system. Arch. Biochem. Biophys. 127:207–223.PubMedCrossRefGoogle Scholar
  33. DeJong, J. W., and Hülsmann, W. C. 1970. A comparative study of palmityl-CoA synthetase activity in rat liver, heart and gut mitochondrial and microsomal preparations. Biochim. Biophys. Acta 197:127–135.CrossRefGoogle Scholar
  34. Denton, R. M., and Randle, P. J. 1967. Concentration of glycerides and phospholipids in rat heart and gastrocnemuis muscles. Biochem. J. 104:416–421.PubMedGoogle Scholar
  35. Dole, V. P. 1956. A relationship between non-esterified fatty acids in plasma and the metabolism of glucose.J. Clin. Invest. 35:150–154.PubMedCrossRefGoogle Scholar
  36. Edwards, Y. H., Chase, J. F. A., Edwards, M. R., and Tubbs, P. K. 1974. Carnitine acetyltransferase the question of multiple forms. Eur. J. Biochem. 46:209–215.PubMedCrossRefGoogle Scholar
  37. Enser, M. B., Kunz, F., Borensztajn, J., Opie, L. H., and Robinson, D. S. 1967. Metabolism of triglyceride fatty acid by the perfused rat heart. Biochem. J. 104:306–317.PubMedGoogle Scholar
  38. Evans, C. L. 1939. The metabolism of cardiac muscle pp. 157–171. In Recent Advances in Physiology. Blakiston’s Son and Co., Philadelphia.Google Scholar
  39. Evans, J. R. 1964a. Cellular transport of long-chain fatty acids. Can. J. Biochem. 42:955–969.PubMedCrossRefGoogle Scholar
  40. Evans, J. R. 1964b. Importance of fatty acids in myocardial metabolism. Circ. Res. 14/15 Suppl. 2:96–108.Google Scholar
  41. Evans, J. R., Opie, L. H., and Renold, A. E. 1963a. Pyruvate metabolism in the perfused rat heart. Am. J. Physiol. 205:971–976.PubMedGoogle Scholar
  42. Evans, J. R., Opie, L. H., and Shipp, J. C. 1963b. Metabolism of palmitic acid in the perfused rat heart. Am. J. Physiol. 205:766–770.PubMedGoogle Scholar
  43. Fisher, R. B., and Williamson, J. R. 1961. The effects of insulin, adrenaline and nutrients on the oxygen uptake of the perfused rat heart.J. Physiol. 158:102–112.PubMedGoogle Scholar
  44. Frederickson, D. S., and Gordon, R. S. 1956. Transport of fatty acids. Physiol. Rev. 38:585–630.Google Scholar
  45. Friedberg, S. J., and Bressler, R. 1965. The formation and isolation of long-chain acylcarni-tines in mitochondria. Biochim. Biophys. Acta 98:335–343.PubMedGoogle Scholar
  46. Freidman, S., and Frankel, G. 1955. Reversible enzymatic acetylation of carnitine. Arch. Biochem. Biophys. 59:491–501.CrossRefGoogle Scholar
  47. Fritz, I.B., and Yue, T. K. N. 1963. Long-chain carnitine acyltransferase and the role of acylcarnitine derivatives in the catalytic increase of fatty acid oxidation induced by carnitine. J. Lipid Res. 4:279–288.PubMedGoogle Scholar
  48. Fritz, I.B., and Yue, T. K. N. 1964. Effects of carnitine on acetyl CoA oxidation by heart muscle mitochondria. Am. J. Physiol. 206:531–535.PubMedGoogle Scholar
  49. Fritz, I.B., and Marquis, N. R. 1965. The role of acylcarnitine esters and carnitine palmityl-transferase in the transport of fatty acid groups across mitochondrial membranes. Proc. Nat. Acad. Sci. USA 54:1226–1233.PubMedCrossRefGoogle Scholar
  50. Fritz, I.B., Kaplan, E., and Yue, K. T. N. 1962. Specificity of carnitine action on fatty acid oxidation by heart muscle. Am. J. Physiol. 202:117–121.PubMedGoogle Scholar
  51. Gartner, S. L., and Vahouny, G. V. 1973. Endogenous triglycerides and glycogen in perfused rat hearts. Proc. Soc. Exp. Biol. Med. 143:556–560.PubMedGoogle Scholar
  52. Ghosal, J., Whitaworth, T., and Gonigles, J. G. 1969. Biosynthesis of fatty acids from [1-14C] acetate in the perfused rat heart. Biochim. Biophys. Acta 187:576–578.PubMedGoogle Scholar
  53. Gilbertson, J. R. 1969. Effects of fasting on the esterified α-glycerol ethers of heart and adipose tissue in the rat. Metabolism 18:887–894.PubMedCrossRefGoogle Scholar
  54. Gilbertson, J. R., Ferrell, W. J., and Gelman, R. A. 1967. Isolation and analysis of free fatty aldehydes from rat, dog and bovine heart muscle.J. Lipid Res. 8:38–45.PubMedGoogle Scholar
  55. Gold, M., and Spitzer, J. F. 1964. Metabolism of free fatty acids by myocardium and kidney. Am. J. Physiol. 206:153–158.PubMedGoogle Scholar
  56. Goodman, D. S. 1958a. Interaction of human serum albumin with long-chain fatty acid anions.J. Am. Chem. Soc. 80:3892–3898.CrossRefGoogle Scholar
  57. Goodman, D. S. 1958b. The interaction of human erythrocytes with sodium palmitate.J. Clin. Invest. 37:1729–1735.PubMedCrossRefGoogle Scholar
  58. Gordon, R. S., and Cherkes, A. 1956. Unesterified fatty acids in human blood plasma.J. Clin. Invest. 35:206–212.PubMedCrossRefGoogle Scholar
  59. Gordon, R. S., Cherkes, A., and Getes, H. 1957. Unesterified fatty acids in human plasma.J. Clin. Invest. 36:810–815.PubMedCrossRefGoogle Scholar
  60. Green, D. E., Dewan, J. G., and Leloir, L. F. 1937. The β-hydroxybutryric dehydrogenase of animal tissues. Biochem. J. 31:934–949.PubMedGoogle Scholar
  61. Gumpen, S. A., and Norum, K. R. 1973. The relative amounts of long-chain acylcarnitines, short-chain acylcarnitines and carnitine in heart, liver and brown adipose tissue from rats fed on rapeseed oil. Biochim. Biophys. Acta 316:48–55.PubMedGoogle Scholar
  62. Haddock, B. A., Yates, D. W., and Garland, P. B. 1970. The localization of some CoA-dependent enzymes in rat liver mitochondria. Biochem. J. 119:565–573.PubMedGoogle Scholar
  63. Hajra, A. K. 1969. Biosynthesis of alkyl-ether containing lipids from dihydroxyacetone phosphate. Biochem. Biophys. Res. Commun. 37:486–492.PubMedCrossRefGoogle Scholar
  64. Hall, L. M. 1961. Preferential oxidation of acetoacetate by the perfused heart. Biochem. Biophys. Res. Commun. 6:177–179.PubMedCrossRefGoogle Scholar
  65. Harris, P., and Gloster, J. 1972. Effects of acute hypoxia of lipid synthesis in the rat heart. Cardiology 56:43–47.CrossRefGoogle Scholar
  66. Harris, P., Fletcher, R. F., Glaster, J., and Gotsman, M. 1965. The metabolism of glycerol and free fatty acids during exercise in patients with rheumatic heart disease. Clin. Sci. 28:343–356.PubMedGoogle Scholar
  67. Henderson, A. H., and Sonnenblick, E. H. 1972. Influence of free fatty acids on myocardial mechanics and oxygen consumption in rat papillary muscles and perfused hearts, under oxygenated and hypoxic conditions. Recent Adv. Stud. Card Struct. Metab. v:147–162.Google Scholar
  68. Hoppel, C. W., and Tomec, R. J. 1972. Carnitine palmityl transferase location of two enzymatic activities in rat liver mitochondria.J. Biol. Chem. 247:832–841.PubMedGoogle Scholar
  69. Hull, F. E., and Whereat, A. F. 1967. The effects of rotenone on the regulation of fatty acid synthesis in heart mitochondria.J. Biol. Chem. 242:4023–4028.PubMedGoogle Scholar
  70. Hull, F. E., Cheney, H., and Baker, L. 1973a. Fatty acid synthetase and krebs cycle activity in heart mitochondria. J. Mol. Cell. Cardiol. 5:319–339.CrossRefGoogle Scholar
  71. Hull, F. E., Malone, M., and Albers-Schönberg, G. 1973b. Cardiac metabolism of β-hydroxy acids. Recent. Adv. Stud. Card. Struct. Metab. 3:39–52.Google Scholar
  72. Hülsmann, W. C. 1962. Fatty acid synthesis in heart sarcosomes. Biochim. Biophys. Acta 58:417–429.PubMedCrossRefGoogle Scholar
  73. Hülsmann, W. C. 1966. On the synthesis of malonyl-coenzyme A in rabbit heart sarcosomes. Biochim. Biophys. Acta 125:397–400.Google Scholar
  74. Huxtable, R. J., and Wakil, S. J. 1971. Comparative mitochondrial oxidation of fatty acids. Biochim. Biophys. Acta 239:168–171.PubMedGoogle Scholar
  75. Johnson, R. C., and Gilbertson, J. R. 1972. Isolation, characterization and partial purification of a fatty acyl coenzyme A reductase from bovine cardiac muscle.J. Biol. Chem. 247:6991–6998.PubMedGoogle Scholar
  76. Kako, J. K., and Liu, M. S. 1974. Acylation of glycerol-3-phosphate by rabbit heart mitochondria and microsomes: Triiodothyronine-induced increase in its activity. FEBS Lett. 39:243–246.PubMedCrossRefGoogle Scholar
  77. Kaufman, N., Gavin, T. L., and Hill, R. W. 1959. Experimental myocardial infarction in the rat. Arch. Path. 67:482–488.Google Scholar
  78. Kawalek, J. C., and Gilbertson, J. R. 1973. Enzymatic reduction of free fatty aldehydes in bovine cardiac muscle. Biochim. Biophys. Res. Commun. 51:1027–1033.CrossRefGoogle Scholar
  79. Kennedy, E. P. 1957. Metabolism of lipids. Annu. Rev. Biochem. 26:119–148.PubMedCrossRefGoogle Scholar
  80. Kent, S. P., and Diseker, M. 1955. Early myocardial ischemia: Study of histochemical changes in dogs. Lab. Invest. 4:398–405.PubMedGoogle Scholar
  81. Korn, E. D. 1955. Clearing factor a heparin activated lipoprotein lipase. J. Biol. Chem. 215:1–26.PubMedGoogle Scholar
  82. Kornberg, A., and Pricer, W. E. 1953. Enzymatic synthesis of coenzyme A derivatives of long-chain fatty acids. J. Biol. Chem. 204:329–343.PubMedGoogle Scholar
  83. Krebs, H. A. 1967. Mitochondrial generation of reducing power, pp. 105–113. In E. C. Slater, Z. Kanuiga, and L. Wojtack, (eds.). Biochemistry of Mitochondria. Academic Press, New York.Google Scholar
  84. Krebs, H. A., and Eggleston, L. V. 1948. Metabolism of acetoacetate in animal tissues. Biochem. J. 42:294–305.Google Scholar
  85. Kreisberg, R. A. 1966. Effects of diabetes and starvation on myocardial triglyceride and free fatty acid utilization. Am. J. Physiol. 210:379–384.PubMedGoogle Scholar
  86. Kulka, R. G., Krebs, H. A., and Eggleston, L. V. 1961. The reduction of acetoacetate to ß-hydroxybutyrate in animal tissues. Biochem. J. 78:95–106.PubMedGoogle Scholar
  87. LaBelle, E. F., and Hajra, A. K. 1972a. Enzymatic reduction of alkyl and acyl derivatives of dihyroxyacetone phosphate by reduced pyridine nucleotides.J. Biol. Chem. 247:5825–5834.PubMedGoogle Scholar
  88. LaBelle, E. F., and Hajra, A. K. 1972b. Biosynthesis of acyl dihydroxyacetone phosphate in subcellular fractions of rat liver. J. Biol. Chem. 247:5835–5841.PubMedGoogle Scholar
  89. LaNoue, K., Nicklas, W. J., and Williamson, J. R. 1970. Control of citric acid cycle activity in rat heart mitochondria.J. Biol. Chem. 245:102–111.PubMedGoogle Scholar
  90. Lehninger, A. L., and Greville, G. D. 1953. The enzymic oxidation of d and 1-β-hydroxybu-tyrate. Biochim. Biophys. Acta 12:188–202.PubMedCrossRefGoogle Scholar
  91. Liu, M. S., and Kako, J. K. 1974. Characterization of mitochondrial and microsomal monoacyl and diacyl glycerol-3-phosphate biosynthesis in rabbit heart. Biochem. J. 138:11–21.PubMedGoogle Scholar
  92. Liu, M. S., Brooks, P. J., and Kako, K. J. 1974. Biosynthesis of monoacyl-sn-glycerol-3-phosphate by rabbit heart mitochondria: positional specificity differing from liver enzyme. Lipids 9:391–396.PubMedCrossRefGoogle Scholar
  93. Lochner, W., Arnold, G., and Muller-Rucholtz, E. R. 1968. Metabolism of the artificially arrested heart and the gas perfused heart. Am. J. Card. 22:299–311.PubMedCrossRefGoogle Scholar
  94. Lynen, F. 1955. Lipid metabolism. Annu. Rev. Biochem. 24:653–658.PubMedCrossRefGoogle Scholar
  95. Mallou, S., and Alousi, A. A. 1967. Effect of altered cardiac metabolism and work on lipoprotein lipase activity of heart. Am. J. Physiol. 212:1158–1164.Google Scholar
  96. Marquis, N. R., and Fritz, I. B. 1965. Distribution of carnitine, acetylcarnitine and carnitine acetyltransferase in rat tissues.J. Biol. Chem. 240:2193–2196.PubMedGoogle Scholar
  97. Miller, H. I., Gold, M., and Spitzer, J. J. 1962. Removal and mobilization of individual fatty acids in dogs. Am. J. Physiol. 202:370–374.PubMedGoogle Scholar
  98. Neeley, J. R., and Morgan, H. E. 1974. Relationship between carbohydrate and lipid metabolism and energy balance of heart muscle. Annu. Rev. Physiol. 36:413–459.CrossRefGoogle Scholar
  99. Neeley, J. R., Bowman, R. H., and Morgan, H. E. 1969. Effect of ventricular pressure development and palmitate on glucose transport. Am. J. Physiol. 216:804–811.Google Scholar
  100. Neeley, J. R., Roetto, M. J., and Oram, J. F. 1972. Myocardial utilization of carbohydrate and lipids. Prog. Cardiovasc. Dis. 15:289–329.CrossRefGoogle Scholar
  101. Newsholme, E. A., and Taylor, K. 1969. Glycerol kinase activities in muscle from vertebrates and invertebrates. Biochem. J. 112:465–474.PubMedGoogle Scholar
  102. Nikkila, E. A., Tosti, P., and Penttila, O. 1963. The effect of exercise on lipoprotein lipase activity of rat heart, adipose tissue and skeletal muscle. Metabolism 12:863–865.Google Scholar
  103. Norum, K. R., and Bremer, J. 1967. Localization of acyl coenzyme A-carnitine acytransferase in rat liver cells.J. Biol. Chem. 242:407–411.PubMedGoogle Scholar
  104. Norum, K. R., Farstad, M., and Bremer, J. 1966. The submitochondrial distribution of acid: CoA Ligase (AMP) and palmityl-CoA: Carnitine palmityltransferase in rat liver mitochondria. Biochem. Biophys. Res. Commun. 24:797–804.PubMedCrossRefGoogle Scholar
  105. Ockner, R. K., Manning, J. A., Poppenhausen, R. B., and Ho, W. K. L. 1972. A binding protein for fatty acids in the cytosol of intestinal mucosa, liver, myocardium and other tissues. Science 177:56–58.PubMedCrossRefGoogle Scholar
  106. Olson, R. S. 1962. Effect of pyruvate and acetoacetate on the metabolism of fatty acids by the perfused rat heart. Nature 195:597–599.PubMedCrossRefGoogle Scholar
  107. Olson, R. E., and Hoeschen, R. J. 1967. Utilization of endogenous lipid by the isolated perfused rat heart. Biochem. J. 103:796–801.PubMedGoogle Scholar
  108. Opie, L. H. 1968. Metabolism of the heart in health and disease. Am. Heart J. 76:685–698.PubMedCrossRefGoogle Scholar
  109. Opie, L. H. 1969. Metabolism of the heart in health and disease. Am. Heart J. 77:100–122.PubMedCrossRefGoogle Scholar
  110. Opie, L. H., Evans, J. R., and Shipp, J. C. 1963. Effect of fasting on glucose and palmitate metabolism of the perfused rat heart. Am. J. Physiol. 205:1203–1208.PubMedGoogle Scholar
  111. Oram, J. F., Bennetch, S. L., and Neeley, J. R. 1973. Regulation of fatty acid utilization in isolated perfused rat hearts. J. Biol. Chem. 248:5299–5309.PubMedGoogle Scholar
  112. Pande, S. V. 1971. On the rate-controlling factors of long-chain fatty acid oxidation. J. Biol. Chem. 246:5384–5390.PubMedGoogle Scholar
  113. Pande, S. V. 1973. Reversal by CoA of palmityl CoA inhibition of long-chain acyl CoA synthetase activity. Biochim. Biophys. Acta 306:15–20.PubMedGoogle Scholar
  114. Pande, S. V., and Blanchaer, M. C. 1971. Reversible inhibition of mitochondrial adenosine diphosphate phosphorylation by long-chain acyl coenzyme A esters. J. Biol. Chem. 246:402–411.PubMedGoogle Scholar
  115. Pande, S. V., and Mead, J. F. 1968. Inhibition of enzyme acitivities by free fatty acids. J. Biol. Chem. 243:6180–6185.PubMedGoogle Scholar
  116. Parker, S. L., Thompson, J. A., and Reitz, R. C. 1974. Effects of chronic ethanol ingestion upon acyl-CoA carnitine acyltransferase in liver and heart. Lipids 9:520–525.PubMedCrossRefGoogle Scholar
  117. Radloff, J. I., and Ferrell, W. J. 1970. Qualitative and quantitative analysis of free fatty aldehydes in human heart. Physiol. Chem. Phys. 2:105–109.Google Scholar
  118. Rapport, M. M., and Norton, W. T. 1962. Chemistry of lipids. Annu. Rev. Biochem. 31:103–138.PubMedCrossRefGoogle Scholar
  119. Rault, C., Fruchart, J. C., and Dewailly, P. 1974. Experimental studies on the regulation of myocardial and adipose tissue lipoprotein lipase activities in the rat. Biochem. Biophys. Res. Commun. 59:160–164.PubMedCrossRefGoogle Scholar
  120. Reiner, L., Wittels, B., Barrnett, J. B., and Rutenberg, A. M. 1955. Histological profile of human myocardium in coronary artery disease. J. Histochem. Cytochem. 3:409–415.Google Scholar
  121. Rinetti, M., Viscoli, O., Colombi, I., and Barbaresi, F. 1964. Myocardial lipids after intense work. Cardiologia 45:269–275.PubMedCrossRefGoogle Scholar
  122. Robinson, J., and Newsholme, E. A. 1967. Glycerol kinase activities in rat heart and adipose tissue. Biochem. J. 104:2C.Google Scholar
  123. Rothlin, M. E., and Bing, R. J. 1961. Extraction and release of individual free fatty acids by heart and fat depots.J. Clin. Invest. 40:1380–1386.PubMedCrossRefGoogle Scholar
  124. Scheuer, J., and Brachfeld, N. 1966. Myocardial uptake and fractional distribution of palmitate 1-[14C] by the ischemic dog heart. Metabolism 15:945–954.PubMedCrossRefGoogle Scholar
  125. Schewe, T., Lidwig, P., and Rapport, S. 1974. On a slow inhibitory effect of free fatty acids on the respiratory chain of non-phosphorylating submitochondrial particles from beef heart. FEBS Lett. 46:39–41.PubMedCrossRefGoogle Scholar
  126. Scholte, H. R., Wit-Peeters, E. M., and Bakker, J. C. 1971. The intracellular and intramito-chondrial distribution of short chain acyl-CoA synthetase in guinea pig heart. Biochim. Biophys. Acta 231:479–486.PubMedGoogle Scholar
  127. Scott, J. C., Finkelstein, L. J., and Spitzer, J. J. 1962. Myocardial removal of free fatty acids under normal and pathological conditions. Am. J. Physiol. 203:482–486.PubMedGoogle Scholar
  128. Shrago, E., Shug, A., Elson, C., Spennetta, T., and Crosby, C. 1974. Regulation of metabolite transport in rat and guinea pig liver mitochondria by long-chain fatty acyl coenzyme A esters. J. Biol. Chem. 249:5269–5274.PubMedGoogle Scholar
  129. Shepherd, D., Yates, D. W., and Garland, P. B. 1966. The rate limiting step in the oxidation of palmitate or palmityl coenzyme A by rat liver mitochondria. Biochem. J. 98:3C.PubMedGoogle Scholar
  130. Shipp, J. C., Matos, O. E., Kinzely, H., and Crevasse, L. E. 1964. CO2 formed from endogenous and exogenous substrates in the rat heart. Am. J. Physiol. 207:1231–1238.PubMedGoogle Scholar
  131. Shtacher, G., and Shafrin, E. 1965. Uptake and distribution of fatty acids in rat diaphragm and heart muscle in vitro. Arch. Biochem. Biophys. 106:205–213.Google Scholar
  132. Shug, A. L., and Shrago, E. 1973. A proposed mechanism for fatty acid effects on energy metabolism of the heart. J. Lab. Clin. Med. 81:214–218.PubMedGoogle Scholar
  133. Shug, A., Lerner, E., Elson, C., and Shrago, E. 1971. The inhibition of adenine nucleotide translocase activity by oleoyl CoA and its reversal in rat liver mitochondria. Biochem. Biophys. Res. Commun. 43:557–563.PubMedCrossRefGoogle Scholar
  134. Snyder, F. 1969. The biochemistry of lipids containing ether bonds, pp. 287–335. In R. T. Homan (ed.) Progress in the Chemistry of Fats and Other Lipids. Pergammon Press, New York.Google Scholar
  135. Snyder, F., Malone, B., and Blank, M. L. 1970. Enzymic synthesis of 0-alkyl bonds in glycerolipids. J. Biol. Chem. 245:1790–1799.PubMedGoogle Scholar
  136. Solberg, H. E. 1972. Different carnitine acyl transferases in calfliver. Biochim. Biophys. Acta 280:422–433.PubMedGoogle Scholar
  137. Spector, A. A., and Steinberg, D. 1965. Utilization of unesterified palmitate by Ehrlich ascites tumor cells. J. Biol. Chem. 240:3747–3753.PubMedGoogle Scholar
  138. Spector, A. A., Steinberg, D., and Tanaka, A. 1965. Uptake of free fatty acids by Ehrlich ascites tumor cells. J. Biol. Chem. 240:1032–1041.PubMedGoogle Scholar
  139. Stein, O., and Stein, Y. 1963. Metabolism of fatty acids in the isolated perfused rat heart. Biochim. Biophys. Acta 70:517–530.PubMedCrossRefGoogle Scholar
  140. Stein, O., and Stein, Y. 1968. Lipid synthesis intracellular transport and storage. J. Cell Biol. 36:63–77.CrossRefGoogle Scholar
  141. Stern, J. R., and del Campillo, A. 1956. Enzymes of fatty acid metabohsm: Properties of crystaline crotonase.J. Biol. Chem. 218:985–1002.PubMedGoogle Scholar
  142. Stern, J. R., del Campillo, A., and Lehninger, A. L. 1955. Enzymatic racemization of ß-hydroxbutryl CoA and the sterospecificity of the fatty acid cycle. J. Am. Chem. Soc. 77:1073–1074.CrossRefGoogle Scholar
  143. Stern, J. R., Coon, M. J., and del Campillo, A. 1956. Enzymes of fatty acid metabolism breakdown and synthesis of ß-keto fatty acids. J. Biol. Chem. 221:1–13.PubMedGoogle Scholar
  144. Swarttouw, M. A. 1974. The oxidation of erucic acid by rat heart mitochondrea. Biochim. Biophys. Acta 337:13–21.PubMedGoogle Scholar
  145. Tubbs, P. K., and Chase, J. F. R. 1967. Inhibition of ENZ carnitine acetyl transferase and mammalian ENZ fatty-acid synthetase by bromoacetyl coenzyme A. Abstracts of communications of the Fourth Meeting of the Federation of European Biochemical Societies, Oslo Universitate-Forlaget pp. 135.Google Scholar
  146. Vagelos, P. R. 1971. Regulation of fatty acid biosynthesis. Curr. Top. Cell. Reg. 4:119–166.Google Scholar
  147. Vahouny, G. V., Katzen, R., and Entenman, C. 1967. Myocardial metabolism II. role of nutritional state and glucose oxidation by isolated perfused hearts. Biochim. Biophys. Acta 137:181–183.PubMedGoogle Scholar
  148. Van Tol A., and Hülsmann, W. C. 1969. Localization of palmityl-CoA: carnitine palmitoyl transferase in rat liver. Biochem. Biophys. Acta 189:342–353.PubMedCrossRefGoogle Scholar
  149. Wakil, S. J. 1970. Fatty acid metabolism, pp. 1–48. In S. J. Wakil, (ed.). Lipid Metabolism. Academic Press, New York.Google Scholar
  150. Wakil, S. J., Green, D. E., Mil, S., and Mahler, H. R. 1954. Studies on the fatty acid oxidizing system of animal tissues: VI. β-hydroxyacyl coenzyme A dehydrogenase. J. Biol. Chem. 207:631–638.PubMedGoogle Scholar
  151. Wartman, W. B., Jennings, R. B., Yokoyama, H. O., and Clabaugh, G. F. 1956. Fatty change of the myocardium in early experimental infarction. Arch. Path. 62:318–323.Google Scholar
  152. Whereat, A. F., Hull, F. E., Orishimo, M. W., and Rabinowitz, J. L. 1967. Role of succinate in the regulation of fatty acid biosynthesis by heart mitochondria. J. Biol. Chem. 242:4013–4022.PubMedGoogle Scholar
  153. Whereat, A. F., Orishimo, M. W., and Nelson, J. 1969. Location of different synthetic systems for fatty acids in inner and outer mitochondrial membranes from rabbit heart. J. Biol. Chem. 244:6498–6506.PubMedGoogle Scholar
  154. Willebrands, A. F. 1964. Myocardial extraction of individual non-esterified fatty acids, esteri-fied fatty acids and acetoacetate in the fasting human. Clin. Chem. Acta 10:425–446.CrossRefGoogle Scholar
  155. Williamson, J. R., and Krebs, H. A. 1961. Acetate as fuel of respiration in the perfused rat heart. Biochem. J. 80:540–547.PubMedGoogle Scholar
  156. Williamson, K. H., Mellanby, J., and Krebs, A. A. 1962. Enzymic determination of d (-)-β-hydroxybutyric acid and acetoacetic acid In the fasting human. Clin. Chem. Acta 10:435–446.Google Scholar
  157. Williamson, D. H., Lund, P., and Krebs, H. A. 1967. The redox state of free nicotinamide-adenine dinucleotide in the cytoplasm and mitochondria of rat liver. Biochem. J. 103:514–527.PubMedGoogle Scholar
  158. Wit-Peeters, E. M., Scholte, H. R., and Elenbass, H. L. 1970. Fatty acid synthesis in heart. Biochim. Biophys. Acta 210:360–370.PubMedGoogle Scholar
  159. Wojtczak, L. 1974. Effects of fatty acids and acyl-CoA on the permeability of mitochondrial membranes to monovalent cations. FEBS Lett. 44:25–29.PubMedCrossRefGoogle Scholar
  160. Wojtczak, L., and Zaluska, H. 1967. The inhibition of translocation of adenine nucleotides through mitochondrial membranes by oleate. Biochem. Biophys. Res. Commun. 28:76–81.PubMedCrossRefGoogle Scholar
  161. Wood, J. M. 1975. Carnitine palmityltransferase in neonatal and adult heart and liver mitochondria. J. Biol. Chem. 250:3062–3066.Google Scholar
  162. Wood, J. M., Sordahl, L. A., Lewis, R. M., and Schwartz, A. 1973. Effect of chronic myocardial ischemia on the activity of carnitine palmityl coenzyme A transferase of isolated canine heart mitochondria. Circ. Res. 32:340–347.PubMedGoogle Scholar
  163. Yates, D. W., and Garland, P. B. 1966. The partial latency and intramitochondrial distribution of carnitine-palmityltransferase and the CoA and carnitine permeable space of rat liver mitochondria. Biochem. Biophys. Res. Commun. 23:460–466.PubMedCrossRefGoogle Scholar
  164. Yates, D. W., and Garland, P. B. 1970. Carnitine palmityltransferase activities of rat liver mitochondria. Biochem. J. 119:547–552.PubMedGoogle Scholar
  165. Yates, D. W., Sheperd, D., and Garland, P. 1966. Organization of fatty acid activation in rat liver mitochondria. Nature 209:1213–1215.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1977

Authors and Affiliations

  • John R. Gilbertson
    • 1
  1. 1.Department of Pharmacology-Physiology, School of Dental MedicineUniversity of PittsburghPittsburghUSA

Personalised recommendations