Advertisement

Brain

  • Robert L. Wykle
Part of the Monographs in Lipid Research book series (MLR)

Abstract

The brain is an extremely complex organ with its many cell types, myelinated axons, complex anatomical structure, and the so-called blood-brain barrier. Lipids account for approximately 33% of the dry weight of the grey matter of adult human brain and 55% of the white matter dry weight (Bowen et al., 1974). The lipid composition and metabolism vary greatly with age and development; some compartments, such as the myelin lipids, have a slow turnover, while other compartments are very active. The brain contains two major cell types: the neurons, which are the functionally active cells, and the glial cells that are generally divided into two major types, the astrocytes, which appear to have a nutritive role, and the oligodendrocytes, which form the myelin. All these factors combine, making it difficult to obtain pure subcellular fractions and to interpret metabolic findings in studies of lipid metabolism in the brain.

Keywords

Phytanic Acid Ketone Body Essential Fatty Acid Deficiency Glyceryl Ether Lignoceric Acid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abra, R. M., and Quinn, P. J. 1975. A novel pathway for phosphatidylcholine catabolism in rat brain homogenates. Biochim. Biophys. Acta 380:436–441.PubMedGoogle Scholar
  2. Aeberhard, E., and Menkes, J. H. 1968. Biosynthesis of long chain fatty acids by subcellular particles of mature brain. J. Biol. Chem. 243:3834–3840.PubMedGoogle Scholar
  3. Ansell, G. B. 1973. Phospholipids and the nervous system, pp. 377–422. In G. B. Ansell, J. N. Hawthorne, and R. M. C. Dawson (eds.). Form and Function of Phospholipids, Vol. 3. Elsevier Scientific Publishing Co., New York.Google Scholar
  4. Ansell, G. B., and Chojnacki, T. 1962. Incorporation of 1-O-phosphoryl-2-dimethylaminoethanol and phosphorylcholine into the phospholipids of brain and liver dispersions. Nature 196:545–547.PubMedGoogle Scholar
  5. Ansell, G. B., and Metcalfe, R. F. 1968. The labelling of brain phosphatidylethanolamine and ethanolamine plasmalogen from cytidine diphosphate ethanolamine in vitro. Biochem. J. 109:29P.Google Scholar
  6. Ansell, G. B., and Metcalfe, R. F. 1971. Studies on the CDP-ethanolamine-1,2-diglyceride ethanolaminephosphotransferase of rat brain. J. Neurochem. 18:647–665.PubMedGoogle Scholar
  7. Ansell, G. B., and Spanner, S. 1965. The magnesium-ion-dependent cleavage of the vinyl ether linkage of brain ethanolamine plasmalogen. Biochem. J. 94:252–258.PubMedGoogle Scholar
  8. Ansell, G. B., and Spanner, S. 1966. The incorporation of [2-14C]ethanolamine and [Me-14C]choline into brain phospholipids in vivo and in vitro. Biochem. J. 100:50P.Google Scholar
  9. Ansell, G. B., and Spanner, S. 1967. The metabolism of labelled ethanolamine in the brain of the rat in vivo. J. Neurochem. 14:873–885.Google Scholar
  10. Ansell, G. B., and Spanner, S. 1972. The metabolism of phosphatidylcholine in brain tissue, pp. 151–159. In J. Ganguly and R. M. S. Smellie (eds.). Current Trends in the Biochemistry of Lipids. Academic Press, New York.Google Scholar
  11. Ansell, G. B., Chojnacki, T., and Metcalfe, R. F. 1965. The incorporation of phosphorylpropanolamine and phosphorylethanolamine into the phospholipids of brain dispersions. J. Neurochem. 12:649–656.PubMedGoogle Scholar
  12. Arce, A., Maccioni, H. J., and Caputto, R. 1971. The biosynthesis of gangliosides. The incorporation of galactose, N-acetylgalactosamine and N-acetylneuraminic acid into endogenous acceptors of subcellular particles from rat brain in vitro. Biochem. J. 121:483–493.Google Scholar
  13. Aronson, S. M., and Volk, B. (eds.). 1967. Proceedings of the Third International Symposium on the Cerebral Sphingolipidoses, (1965): Inborn Disorders of Sphingolipid Metabolism. 513 pp. Pergamon Press, New York.Google Scholar
  14. Bach, G., Cohen, M. M., and Kohn, G. 1975. Abnormal ganglioside accumulation in cultured fibroblasts from patients with mucolipidosis IV. Biochem. Biophys. Res. Commun. 66:1483–1490.PubMedGoogle Scholar
  15. Baker, R. R., and Thompson, W. 1973. Selective acylation of 1-acylglycerophosphorylinositol by rat brain microsomes. Comparison with 1-acylglycerophosphorylcholine.J. Biol. Chem. 248:7060–7065.PubMedGoogle Scholar
  16. Barenholz, Y., Roitman, A., and Gatt, S. 1966. Enzymatic hydrolysis of sphingolipids II. Hydrolysis of sphingomyelin by an enzyme from rat brain. J. Biol. Chem. 241:3731–3737.Google Scholar
  17. Basu, S., Kaufman, B., and Roseman, S. 1968. Enzymatic synthesis of ceramide-glucose and ceramide-lactose by glycosyltransferases from embryonic chicken brain. J. Biol. Chem. 243:5802–5807.PubMedGoogle Scholar
  18. Basu, S., Schultz, A. M., Basu, M., and Roseman, S. 1971. Enzymatic synthesis of galacto-cerebroside by a galactosyltransferase from embryonic chicken brain. J. Biol. Chem. 246:4272–4279.PubMedGoogle Scholar
  19. Basu, S., Kaufman, B., and Roseman, S. 1973. Enzymatic synthesis of glucocerebroside by a glucosyltransferase from embryonic chicken brain. J. Biol. Chem. 248:1388–1394.PubMedGoogle Scholar
  20. Baumann, W. J., Madson, T. H., Chang, N., Bandi, P. C., and Schmid, H. H. O. 1975. On the substrate specificity of enol ether formation in rat brain. Metabolism of O-alkyl ethanediol phosphorylethanolamine. Biochem. Biophys. Res. Commun. 66:717–724.PubMedGoogle Scholar
  21. Bazán, N. G., Jr. 1971. Phospholipases A1 and A2 in brain subcellular fractions. Acta Physiol. Lat. Am. 21:101–106.PubMedGoogle Scholar
  22. Bell, O. E., Jr., and White, H. B., Jr. 1968. Plasmalogen metabolism in developing rat brain: Aldehydes as a direct precursor in the formation of the vinyl ether linkage. Biochim. Biophys. Acta 164:441–444.PubMedGoogle Scholar
  23. Bell, O. E., Jr., Blank, M. L., and Snyder, F. 1971. The incorporation of 18O and 14C from long-chain alcohols into the alkyl and alk-1-enyl ethers of phospholipids of developing rat brain. Biochim. Biophys. Acta 231:579–583.PubMedGoogle Scholar
  24. Bickerstaffe, R., and Mead, J. F. 1967. Metabolism of palmitaldehyde-1-14C in the rat brain. Biochemistry 6:655–662.PubMedGoogle Scholar
  25. Bickerstaffe, R., and Mead, J. F. 1968. Metabolism of chimyl alcohol and phosphatidyl ethanolamine in the rat brain. Lipids 3:317–320.PubMedGoogle Scholar
  26. Binaglia, L., Goracci, G., Porcellati, G., Roberti, R., and Woelk, H. 1973. The synthesis of choline and ethanolamine phosphoglycerides in neuronal and glial cells of rabbit in vitro. J. Neurochem. 21:1067–1082.PubMedGoogle Scholar
  27. Binaglia, L., Roberti, R., Goracci, G., Francescangeli, E., and Porcellati, G. 1974. Enzymic synthesis of ethanolamine plasmalogens through ethanolaminephosphotransferase activity in neurons and glial cells of rabbit in vitro. Lipids 9:738–747.PubMedGoogle Scholar
  28. Blank, M. L., Wykle, R. L., and Snyder, F. 1972. The biosynthesis of ethanolamine plasmalogens by a postmitochondrial fraction from rat brain. Biochem. Biophys. Res. Commun. 47:1203–1208.PubMedGoogle Scholar
  29. Bleasdale, J. E., and Hawthorne, J. N. 1975. The effect of electrical stimulation on the turnover of phosphatidic acid in synaptosomes from guinea-pig brain. J. Neurochem. 24:373–379.PubMedGoogle Scholar
  30. Boone, S. C., and Wakil, S. J. 1970. In vitro synthesis of lignoceric and nervonic acids in mammalian liver and brain. Biochemistry 9:1470–1479.PubMedGoogle Scholar
  31. Bowen, D. M., and Radin, N. S. 1968. Hydroxy fatty acid metabolism in brain. Adv. Lipid Res. 6:255–272.PubMedGoogle Scholar
  32. Bowen, D. M., Davison, A. N., and Ramsey, R. B. 1974. The dynamic role of lipids in the nervous system. Int. Rev. Sci. (Biochem. Ser. 1) 4:141–179.Google Scholar
  33. Brady, R. O. 1962. Studies on the total enzymatic synthesis of cerebrosides. J. Biol. Chem. 237:PC2416–PC2417.Google Scholar
  34. Brady, R. O. 1972. Disorders of lipid metabolism, pp. 113–127. In J. Ganguly and R. M. S. Smellie (eds.). Current Trends in the Biochemistry of Lipids. Academic Press, New York.Google Scholar
  35. Brady, R. O. 1974. The chemistry and control of hereditary lipid diseases. Chem. Phys. Lipids 13:271–282.PubMedGoogle Scholar
  36. Brady, R. O., Bradley, R. M., Young, O. M., and Kaller, H. 1965. An alternative pathway for the enzymatic synthesis of sphingomyelin. J. Biol. Chem. 240:PC3693–PC3694.Google Scholar
  37. Brady, R. O., Kanfer, J. N., Mock, M. B., and Fredrickson, D. J. 1966. The metabolism of sphingomyelin. II. Evidence of an enzymatic deficiency in Niemann-Pick disease. Proc. Natl. Acad. Sci. USA 55:366–369.PubMedGoogle Scholar
  38. Brady, R. O., Gal, A. E., Bradley, R. M., and Mårtensson, E. 1967. The metabolism of ceramide trihexosides. I. Purification and properties of an enzyme that cleaves the terminal galactose molecule of galactosylgalactosylglucosylceramide.J. Biol. Chem. 242:1021–1026.PubMedGoogle Scholar
  39. Braun, P. E., Moreli, P., and Radin, N. S. 1970. Synthesis of C18 - and C20-dihydrosphingosines, ketodihydrosphingosines, and ceramides by microsomal preparations from mouse brain. J. Biol. Chem. 245:335–341.PubMedGoogle Scholar
  40. Brockerhoff, H., and Jensen, R. G. 1974. Lipolytic Enzymes. Academic Press, New York. 330 pp.Google Scholar
  41. Brophy, P. J., and Vance, D. E. 1975. Elongation of fatty acids by microsomal fractions from the brain of the developing rat. Blochem. J. 152:495–501.Google Scholar
  42. Cantrill, R. C., and Carey, E. M. 1975. Changes in the activities of de novo fatty acid synthesis and palmitoyl-CoA synthetase in relation to myelination in rabbit brain. Biochim. Biophys. Acta 380:165–175.PubMedGoogle Scholar
  43. Caputto, R., Maccioni, H. J., and Arce, A. 1974. Biosynthesis of brain gangliosides. Mol. Cell. Blochem. 4:97–106.Google Scholar
  44. Carey, E. M. 1975. A comparative study of the metabolism of de novo synthesized fatty acids from acetate and glucose, and exogenous fatty acids, in slices of rabbit cerebral cortex during development.J. Neurochem. 24:237–244.PubMedGoogle Scholar
  45. Carey, E. M., and Parkin, L. 1975. Fatty acid metabolism in the microsomal fraction of developing rabbit brain. Biochim. Biophys. Acta 380:176–189.PubMedGoogle Scholar
  46. Carter, T. P., and Kanfer, J. 1974. Observations on the biosynthesis of rat brain sphingolipids in vivo: Formation of fatty acid amides. Chem. Phys. Lipids 13:340–351.PubMedGoogle Scholar
  47. Chae, K., Piantadosi, C., and Snyder, F. 1973. An alternate enzymie route for the synthesis of the alkyl analog of phosphatidic acid involving alkylglycerol. Blochem. Biophys. Res. Commun. 51:119–124.Google Scholar
  48. Chang, M., and Ballou, C. E. 1967. Specificity of ox brain triphosphoinositide Phosphomonoesterase. Blochem. Biophys. Res. Commun. 26:199–205.Google Scholar
  49. Chang, N., and Schmid, H. H. O. 1975. Structural specificity in ether lipid biosynthesis. Formation of hydroxyalkyl and oxoalkyl glycerophosphatides.J. Biol. Chem. 250:4877–4882.Google Scholar
  50. Chesterton, C. J. 1968. Distribution of cholesterol precursors and other lipids among rat liver intracellular structures. Evidence for the endoplasmic reticulum as the site of cholesterol and cholesterol ester synthesis.J. Biol. Chem. 243:1147–1151.PubMedGoogle Scholar
  51. Chien, J-I., Williams, T., and Basu, S. 1973. Biosynthesis of a globoside-type glycosphingolipid by a β-N-acetylgalactosaminyltransferase from embryonic chicken brain.J. Biol. Chem. 248:1778–1785.PubMedGoogle Scholar
  52. Clarenburg, R., Chaikoff, I. L., and Morris, M. D. 1963. Incorporation of injected cholesterol into the myelinating brain of 17-day-old rabbit. J. Neurochem. 10:135–143.PubMedGoogle Scholar
  53. Coleman, P. L., Fishman, P. H., Brady, R. O., and Todaro, G. J. 1975. Altered ganglioside biosynthesis in mouse cell cultures following transformation with chemical carcinogens and X-irradiation. J. Biol. Chem. 250:55–60.PubMedGoogle Scholar
  54. Colodzin, M., and Kennedy, E. P. 1965. Biosynthesis of diphosphoinositide in brain. J. Biol. Chem. 240:3771–3780.PubMedGoogle Scholar
  55. Cook, H. W., and Spence, M. W. 1973a. Formation of monoenoic fatty acids by desaturation in rat brain homogenate. Some properties of the enzyme system of 10-day-old brain. J. Biol. Chem. 248:1786–1793.PubMedGoogle Scholar
  56. Cook, H. W., and Spence, M. W. 1973b. Formation of monoenoic fatty acids by desaturation in rat brain homogenate. Effects of age, fasting, and refeeding, and comparison with liver enzyme.J. Biol. Chem. 248:1793–1796.PubMedGoogle Scholar
  57. Cook, H. W., and Spence, M. W. 1974. Biosynthesis of fatty acids in vitro by homogenate of developing rat brain: Desaturation and chain-elongation. Biochim. Biophys. Acta 369:129–141.PubMedGoogle Scholar
  58. Cooper, M. F., and Webster, G. R. 1970. The differentiation of phospholipase A1 and A2 in rat and human nervous tissues.J. Neurochem. 17:1543–1554.PubMedGoogle Scholar
  59. Cooper, M. F., and Webster, G. R. 1972. On the phospholipase A2 activity of human cerebral cortex. J. Neurochem. 19:333–340.PubMedGoogle Scholar
  60. Costantino-Ceccarini, E., and Moreli, P. 1972. Biosynthesis of brain sphingolipids and myelin accumulation in the mouse. Lipids 7:656–659.PubMedGoogle Scholar
  61. Curtino, J. A., and Caputto, R. 1972. Enzymatic synthesis of glucosylsphingosine by rat brain. Lipids 7:525–527.PubMedGoogle Scholar
  62. Curtino, J. A., and Caputto, R. 1974. Enzymic synthesis of cerebroside from glycosylsphingo-sine and stearoyl-CoA by an embryonic chicken brain preparation. Biochem. Biophys. Res. Commun. 56:142–147.PubMedGoogle Scholar
  63. D’Adamo, A. F., Jr. 1970. Fatty acids. Handb. Neurochem. 3:525–546.Google Scholar
  64. D’Amato, R. A., Horrocks, L. A., and Richardson, K. E. 1975. Kinetic properties of plasmalogenase from bovine brain.J. Neurochem. 24:1251–1255.PubMedGoogle Scholar
  65. Davison, A. N. 1965. Brain sterol metabolism. Adv. Lipid Res. 3:171–196.PubMedGoogle Scholar
  66. Davison, A. N. 1970a. Lipid metabolism in nervous tissue. Compr. Biochem. 18:293–328.Google Scholar
  67. Davison, A. N. 1970b. Cholesterol metabolism. Handb. Neurochem. 3:547–560.Google Scholar
  68. Davison, A. N. 1972. Metabolism of myelin lipids in the developing brain, pp. 129–139. In J. Ganguly and R. M. S. Smellie (eds.). Current Trends in the Biochemistry of Lipids. Academic Press, New York.Google Scholar
  69. Davison, A. N., Dobbing, J., Morgan, R. S., and Payling Wright, G. 1959. Metabolism of myelin: The persistence of [4-14C]cholesterol in the mammalian central nervous system. Lancet 1:658–660.PubMedGoogle Scholar
  70. Dawson, R. M. C., and Thompson, W. 1964. The triphosphoinositide Phosphomonoesterase of brain tissue. Biochem. J. 91:244–250.PubMedGoogle Scholar
  71. Dawson, R. M. C., Freinkel, N., Jungalwala, F. B., and Clarke, N. 1971. The enzymic formation of myoinositol 1:2-cyclic phosphate from phosphatidylinositol. Biochem. J. 122:605–607.PubMedGoogle Scholar
  72. Dawson, R. M. C., Jungalwala, F. B., Miller, E., and McMurray, W. C. 1972. Synthesis and exchange of phospholipids within brain and liver cells, pp. 365–376. In J. Ganguly and R. M. S. Smellie (eds.). Current Trends in the Biochemistry of Lipids, Academic Press, New York.Google Scholar
  73. Dawson, G., Stoolmiller, A. C., and Radin, N. S. 1974. Inhibition of β-glucosidase by N-(n-hexyl)-O-glucosylsphingosine in cell strains of neurological origin. J. Biol. Chem. 249:4638–4646.PubMedGoogle Scholar
  74. Debuch, H., Müller, J., and Fürniss, H. 1971. Über die Bildung der Plasmalogene zur Zeit der Myelinisierung bei der Ratte, IV. Einbau von 14C-markiertem O-(1-Alkyl-sn-glycerin-3-phosphoryl)äthanolamin—ein direkter Vorläufer der Plasmalogene. Hoppe Seyler’s Z. Physiol. Chem. 352:984–990.PubMedGoogle Scholar
  75. De Medio, G. E., Gaiti, A., Goracci, G., and Porcellati, G. 1973. The base-exchange pathway for phospholipid synthesis in nervous membranes. Biochem. Soc. Trans. 1:348–352.Google Scholar
  76. Den, H., Kaufman, B., McGuire, E. J., and Roseman, S. 1975. The sialic acids. XVIII. Subcellular distribution of seven glycosyltransferases in embryonic chicken brain. J. Biol. Chem. 250:739–746.PubMedGoogle Scholar
  77. Dhopeshwarkar, G. A. 1975a. Metabolism of linolenic acid in developing brain: I. Incorporation of radioactivity from 1-14C linolenic acid into brain fatty acids. Lipids 10:238–241.Google Scholar
  78. Dhopeshwarkar, G. A. 1975b. Metabolism of 1-14C linolenic acid in developing brain: II. Incorporation of radioactivity from 1-14C linolenate into brain lipids. Lipids 10:242–247.Google Scholar
  79. Dhopeshwarkar, G. A., and Mead, J. F. 1973. Uptake and transport of fatty acids into the brain and the role of the blood-brain barrier system. Adv. Lipid Res. 11:109–142.PubMedGoogle Scholar
  80. Dhopeshwarkar, G. A., and Subramanian, C. 1973. Metabolism of 1,2-(1-14C) dipalmitoyl phosphatidylcholine in the developing brain. Lipids 8:753–758.PubMedGoogle Scholar
  81. Dhopeshwarkar, G. A., Subramanian, C., and Mead, J. F. 1971. Rapid uptake of [1-14C] acetate by the adult rat brain 15 seconds after carotid injection. Biochim. Biophys. Acta 248:41–47.PubMedGoogle Scholar
  82. Dils, R. R., and Hübscher, G. 1961. Metabolism of phospholipids. III. The effect of calcium ions on the incorporation of labelled choline into rat-liver microsomes. Biochim. Biophys. Acta 46:505–513.PubMedGoogle Scholar
  83. Diringer, H., and Koch, M. A. 1973. Biosynthesis of sphingomyelin. Transfer of phosphorylcholine from phosphatidylcholine to erythro-ceramide in a cell-free system. Hoppe-Seyler’s Z. Physiol. Chem. 354:1661–1665.PubMedGoogle Scholar
  84. Diringer, H., Marggraf, W. D., Koch, M. A., and Anderer, F. A. 1972. Evidence for a new biosynthetic pathway of sphingomyelin in SV 40 transformed mouse cells. Biochem. Biophys. Res. Commun. 47:1345–1352.PubMedGoogle Scholar
  85. Dobbing, J. 1963. The entry of cholesterol into developing rat brain. J. Neurochem. 10:739–742.Google Scholar
  86. Edmond, J. 1974. Ketone bodies as precursors of sterols and fatty acids in the developing rat. J. Biol. Chem. 249:72–80.PubMedGoogle Scholar
  87. Edmond, J., and Popják, G. 1974. Transfer of carbon atoms from mevalonate to n-fatty acids.J. Biol. Chem. 249:66–71.PubMedGoogle Scholar
  88. Eichberg, J., and Hauser, G. 1973. The subcellular distribution of polyphosphoinositides in myelinated and unmyelinated rat brain. Biochim. Biophys. Acta 326:210–223.PubMedGoogle Scholar
  89. Eichberg, J., Hauser, G., and Karnovsky, M. L. 1969. Lipids of nervous tissue, pp. 185–287. In G. H. Bourne (ed.). The Structure and Function of Nervous Tissue, Vol. 3. Academic Press, New York.Google Scholar
  90. El-Bassiouni, E. A., Piantadosi, C., and Snyder, F. 1975. Metabolism of alkyldihydroxyacetone phosphate in rat brain. Biochim. Biophys. Acta 388:5–11.PubMedGoogle Scholar
  91. Erwin, V. G., and Deitrich, R. A. 1966. Brain aldehyde dehydrogenase. Localization, purification, and properties. J. Biol. Chem. 241:3533–3539.PubMedGoogle Scholar
  92. Erwin, V. G., Heston, W. D. W., and Tabakoff, B. 1972. Purification and characterization of an NADH-linked aldehyde reductase from bovine brain. J. Neurochem. 19:2269–2278.PubMedGoogle Scholar
  93. Farrell, D. F., and McKhann, G. M. 1971. Characterization of cerebroside sulfotransferase from rat brain.J. Biol. Chem. 246:4694–4702.PubMedGoogle Scholar
  94. Fishman, P. H. 1974. Normal and abnormal biosynthesis of gangliosides. Chem. Phys. Lipids 13:305–326.PubMedGoogle Scholar
  95. Fishman, P. H., Max, S. R., Tallman, J. F. Brady, R. O., Maclaren, N. K., and Cornblath, M. 1975. Deficient ganglioside biosynthesis: A novel human sphingolipidosis. Science 187:68–70.PubMedGoogle Scholar
  96. Friedel, R. O., Brown, J. D., and Durell, J. 1967. Monophosphatidyl inositol inositolphospho-hydrolase in guinea-pig brain. Biochim. Biophys. Acta 144:684–686.PubMedGoogle Scholar
  97. Fujino, Y., and Negishi, T. 1968. Investigation of the enzymatic synthesis of sphingomyelin. Biochim. Biophys. Acta 152:428–430.PubMedGoogle Scholar
  98. Fujino, Y., Nakano, M., Negishi, T., and Ito, S. 1968a. Substrate specificity for ceramide in the enzymatic formation of sphingomyelin.J. Biol. Chem. 243:4650–4651.PubMedGoogle Scholar
  99. Fujino, Y., Negishi, T., and Ito, S. 1968b. Enzymie synthesis of sphingosylphosphorylcholine. Blochem. J. 109:310–311.Google Scholar
  100. Fulco, A. J. 1974. Metabolic alterations of fatty acids. Annu. Rev. Blochem. 43:215–241.Google Scholar
  101. Fürniss, H., Strosznajder, J., and Debuch, H. 1973. Über die Bildung der Hasmalogene zur Zeit der Myelinisierung bei der Ratte, VI. Einbau von 14C,32P-markiertem O-(1-Alkyl-sn-glycerin-3-phosphoryl)äthanolamin zu verschiedenen Zeiten. Hoppe-Seyler’s Z. Physiol. Chem. 354:697–704.PubMedGoogle Scholar
  102. Gaiti, A., Goracci, G., De Medio, G. E., and Porcellati, G. 1972. Enzymic synthesis of plasmalogen and O-alkyl glycerolipid by base-exchange reaction in the rat brain. FEBS Lett. 27:116–120.PubMedGoogle Scholar
  103. Gaiti, A., De Medio, G. E., Brunetti, M., Amaducci, L., and Porcellati, G. 1974. Properties and function of the calcium-dependent incorporation of choline, ethanolamine and serine into the phospholipids of isolated rat brain microsomes. J. Neurochem. 23:1153–1159.PubMedGoogle Scholar
  104. Gaiti, A., Brunetti, M., and Porcellati, G. 1975. The relationships between the phospholipid pool and the base-exchange reaction in the Ca2+-stimulated incorporation of ethanolamine into brain microsomal phospholipids. FEBS Lett. 49:361–364.PubMedGoogle Scholar
  105. Gallai-Hatchard, J., Magee, W. L., Thompson, R. H. S., and Webster, G. R. 1962. The formation of lysophosphatides from di-acylphosphatides by brain preparations. J. Neurochem. 9:545–554.PubMedGoogle Scholar
  106. Galli, C., White, H. B., Jr., and Paoletti, R. 1970. Brain lipid modifications induced by essential fatty acid deficiency in growing male and female rats. J. Neurochem. 17:347–355.PubMedGoogle Scholar
  107. Garattini, S., Paoletti, P., and Paoletti, R. 1959a. The incorporation of 2-14C mevalonic acid into cholesterol and fatty acids of brain and liver In vitro. Arch. Blochem. Blophys. 80:210–211.Google Scholar
  108. Garattini, S., Paoletti, P., and Paoletti, R. 1959b. Lipid biosynthesis in vivo from acetate-1-14C and mevalonic-2-14C acid. Arch. Blochem. Blophys. 84:253–255.Google Scholar
  109. Gatt, S. 1968. Purification and properties of phospholipase A1 from rat and calf brain. Blochim. Blophys. Acta. 159:304–316.Google Scholar
  110. Gatt, S., and Barenholz, Y. 1973. Enzymes of complex lipid metabolism. Annu. Rev. Biochem. 42:61–90.PubMedGoogle Scholar
  111. Gatt, S., and Rapport, M. M. 1966. Isolation of β-galactosidase and β -glucosidase from brain. Blochim. Blophys. Acta 113:567–576.Google Scholar
  112. Gatt, S., Barenholz, Y., and Roitman, A. 1966. Isolation of rat brain lecithinase-A, specific for the α’-position of lecithin. Blochem. Blophys. Res. Commun. 24:169–178.Google Scholar
  113. Gaylor, J. L. 1972. Microsomal enzymes of sterol biosynthesis. Adv. Lipid Res. 10:89–141.PubMedGoogle Scholar
  114. Gaylor, J. L., 1974. Enzymes of sterol biosynthesis. Int. Rev. Sci. (Biochem Ser. I) 4:1–37.Google Scholar
  115. Goldberg, I., Shechter, I., and Bloch, K. 1973. Fatty acyl-coenzyme A elongation in brain of normal and quaking mice. Science 182:497–499.PubMedGoogle Scholar
  116. Goracci, G., Blomstrand, C., Arienti, G., Hamberger, A., and Porcellati, G. 1973. Base-exchange enzymie system for the synthesis of phospholipids in neuronal and glial cells and their subfractions: A possible marker for neuronal membranes. J. Neurochem. 20:1167–1180.PubMedGoogle Scholar
  117. Hajra, A. K. 1969. Biosynthesis of alkyl-ether containing lipid from dihydroxyacetone phosphate. Biochem. Blophys. Res. Commun. 37:486–492.Google Scholar
  118. Hajra, A. K. 1970. Acyl dihydroxyacetone phosphate: Precursor of alkyl ethers. Blochem. Blophys. Res. Commun. 39:1037–1044.Google Scholar
  119. Hajra, A. K., and Radin, N. S. 1963. In vivo conversion of labeled fatty acids to the sphingolipid fatty acids in rat brain.J. Lipid Res. 4:448–453.PubMedGoogle Scholar
  120. Hammarström, S. 1971. On the biosynthesis of cerebrosides containing non-hydroxy acids. Blochem. Blophys. Res. Commun. 45:459–467.Google Scholar
  121. Hammarström, S. 1972. On the biosynthesis of cerebrosides: Nonenzymatic N-acylation of psychosine by stearoyl coenzyme A. FEB S Lett. 21:259–263.Google Scholar
  122. Hauser, G., and Eichberg, J. 1973. Improved conditions for the preservation and extraction of polyphosphoinositides. Biochim. Biophys. Acta 326:201–209.PubMedGoogle Scholar
  123. Hawkins, R. A., Williamson, D. H., and Krebs, H. A. 1971. Ketone-body utilization by adult and suckling rat brain in vivo. Biochem. J. 122:13–18.Google Scholar
  124. Hawthorne, J. N. 1972. Inositol lipid metabolism and the cell membrane, pp. 383–393. In J. Ganguly and R. M. S. Smellie (eds.). Current Trends in the Biochemistry of Lipids. Academic Press, New York.Google Scholar
  125. Hawthorne, J. N. 1973. Phospholipid metabolism and transport of materials across the cell membrane, pp. 423–440. In G. B. Ansell, J. N. Hawthorne, and R. M. C. Dawson (eds.). Form and Function of Phospholipids, Vol. 3. Elsevier Scientific Publishing Co., New York.Google Scholar
  126. Hawthorne, J. N., and Kai, M. 1970. Metabolism of phosphoinositides. Handb. Neurochem. 3:491–508.Google Scholar
  127. Hawthorne, J. N., and Kemp, P. 1964. The brain phosphoinositides. Adv. Lipid Res. 2:127–166.PubMedGoogle Scholar
  128. Hill, E. E., and Lands, W. E. M. 1970. Phospholipid metabolism, pp. 185–277. In S. J. Wakil (ed.). Lipid Metabolism. Academic Press, New York.Google Scholar
  129. Ho, M. W. 1974. Glucocerebrosidase: A model of enzyme action in membrane, pp. 239–246. In J. M. Tager, G. J. M. Hooghwinkel, and W. Th. Daems (eds.). Enzyme Therapy in Lysosomal Storage Diseases. North-Holland Publishing Company, Amsterdam.Google Scholar
  130. Ho, M. W. 1975. Specificity of low molecular weight glycoprotein effector of lipid glycosidase. FEBS Lett. 53:243–247.PubMedGoogle Scholar
  131. Hokin, L. E. 1969. Phospholipid metabolism and functional activity of nerve cells, pp. 161 – 184. In G. H. Bourne (ed.). The Structure and Function of Nervous Tissue, Vol. III, Academic Press, New York.Google Scholar
  132. Hokin, L. E., and Hokin, M. R. 1958. Acetylcholine and the exchange of inositol and phosphate in brain phosphoinositide. J. Biol. Chem. 233:818–821.PubMedGoogle Scholar
  133. Holub, B. J., Kuksis, A., and Thompson, W. 1970. Molecular species of mono-, di-, and triphosphoinositides of bovine brain. J. Lipid Res. 11:558–564.PubMedGoogle Scholar
  134. Hooghwinkel, G. J. M. 1974. Classification of sphingolipidoses and mucopolysaccharidoses, pp. 13–24. In J. M. Tager, G. J. M. Hooghwinkel, and W. Th. Daems (eds.). Enzyme Therapy in Lysosomal Storage Diseases. North-Holland Publishing Company, Amsterdam.Google Scholar
  135. Horrocks, L. A. 1972. Content, composition, and metabolism of mammalian and avian lipids that contain ether groups, pp. 177–272. In F. Snyder (ed.). Ether Lipids. Chemistry and Biology. Academic Press, New York.Google Scholar
  136. Horrocks, L. A., and Ansell, G. B. 1967. The incorporation of ethanolamine into ether-containing lipids in rat brain. Lipids 2:329–333.PubMedGoogle Scholar
  137. Horrocks, L. A., and Radominska-Pyrek, A. 1972. Enzymic synthesis of ethanolamine plasmalogens from 1-alkyl-2-acyl-sn-glycero-3-(32P)-phosphorylethanolamines by microsomes from rat brain. FEBS Lett. 22:190–192.PubMedGoogle Scholar
  138. Hoshi, M., and Kishimoto, Y. 1973. Synthesis of cerebronic acid from lignoceric acid by rat brain preparation. Some properties and distribution of the α-hydroxylation system.J. Biol. Chem. 248:4123–4130.PubMedGoogle Scholar
  139. Hutton, D., and Steinberg, D. 1973. Identification of propionate as a degradation product of phytanic acid oxidation in rat and human tissues.J. Biol. Chem. 248:6871–6875.PubMedGoogle Scholar
  140. Illingworth, D. R., and Portman, O. W. 1972. The uptake and metabolism of plasma lysophos-phatidylcholine in vivo by the brain of squirrel monkeys. Biochem. J. 130:557–567.PubMedGoogle Scholar
  141. Illingworth, D. R., and Portman, O. W. 1973. Formation of choline from phospholipid precursors: A comparison of the enzymes involved in phospholipid catabolism in the brain of the rhesus monkey. Physiol. Chem. Phys. 5:365–373.PubMedGoogle Scholar
  142. IUPAC-IUB Commission on Biochemical Nomenclature (CBN). 1967. The nomenclature of lipids. Eur. J. Biochem. 2:127–131.Google Scholar
  143. Jatzkewitz, H., and Stinshoff, K. 1973. An activator of cerebroside sulphatase in human normal liver and in cases of congenital metachromatic leukodystrophy. FEBS Lett. 32:129–131.PubMedGoogle Scholar
  144. Johnson, W., and Brady, R. O. 1972. Ceramidetrihexosidase from human placenta. Methods Enzymol. 28:849–856.Google Scholar
  145. Johnson, R. C., and Shah, S. N. 1974. Microsomal synthesis of cholesterol from squalene, lanosterol, and desmosterol. Evidence for the presence of two noncatalytic activator proteins in the 105,000g supernatant fraction from brain, heart, and kidney. Arch. Biochem. Biophys. 164:502–510.PubMedGoogle Scholar
  146. Jungalwala, F. B. 1974. Synthesis and turnover of cerebroside sulfate of myelin in adult and developing rat brain. J. Lipid Res. 15:114–123.PubMedGoogle Scholar
  147. Jungalwala, F. B., Freinkel, N., and Dawson, R. M. C. 1971. The metabolism of phosphati-dylinositol in the thyroid gland of the pig. Biochem. J. 123:19–33.PubMedGoogle Scholar
  148. Kabara, J. J. 1965. Brain cholesterol. XI. A review of biosynthesis in adult mice.J. Am. Oil Chem. Soc. 42:1003–1008.PubMedGoogle Scholar
  149. Kabara, J. J. 1967. Brain cholesterol: The effect of chemical and physical agents. Adv. Lipid Res. 5:279–327.PubMedGoogle Scholar
  150. Kai, M., White, G. L., and Hawthorne, J. N. 1966. The phosphatidylinositol kinase of rat brain. Biochem. J. 101:328–337.PubMedGoogle Scholar
  151. Kai, M., Salway, J. G., and Hawthorne, J. N. 1968. The diphosphoinositide kinase of rat brain. Biochem. J. 106:791–801.PubMedGoogle Scholar
  152. Kandutsch, A. A., and Saucier, S. E. 1972. Sterol and fatty acid synthesis in developing brains of three myelin-deficient mouse mutants. Biochim. Biophys. Acta 260:26–34.PubMedGoogle Scholar
  153. Kanfer, J. N. 1972. Base exchange reactions of the phospholipids in rat brain particles.J. Lipid Res. 13:468–476.PubMedGoogle Scholar
  154. Kanfer, J. N., and Bates, S. 1970. Sphingolipid metabolism II. The biosynthesis of 3-keto-dihydrosphingosine by a partially-purified enzyme from rat brain. Lipids 5:718–720.PubMedGoogle Scholar
  155. Kanfer, J. N., and Spielvogel, C. H. 1975. Phospholipase C catalyzed formation of sphingomyelin-14C from lecithin and N-(14C)-oleoylsphingosine. Lipids 10:391–394.PubMedGoogle Scholar
  156. Kanfer, J. N., Legier, G., Sullivan, J., Raghavan, S. S., and Mumford, R. A. 1975. The Gaucher mouse. Biochem. Biophys. Res. Commun. 67:85–90.PubMedGoogle Scholar
  157. Karlsson, K.-A. 1970a. On the chemistry and occurrence of sphingolipid long-chain bases. Chem. Phys. Lipids 5:6–43.PubMedGoogle Scholar
  158. Karlsson, K.-A. 1970b. Sphingolipid long chain bases. Lipids 5:878–891.PubMedGoogle Scholar
  159. Kelley, R. E., Jr., and Joel, C.D. 1973. The activity of acetyl-coenzyme A carboxylase in rat brain. Biochem. Soc. Trans. 1:467–469.Google Scholar
  160. Kemp, P., Hübscher, G., and Hawthorne, J. N. 1961. Enzymic hydrolysis of inositol-containing phospholipids. Biochem. J. 79:193–200.PubMedGoogle Scholar
  161. Keough, K. M. W., MacDonald, G., and Thompson, W. 1972. A possible relation between phosphoinositides and the diglyceride pool in rat brain. Biochim. Biophys. Acta 270:337–347.PubMedGoogle Scholar
  162. Kiyasu, J. Y., and Kennedy, E. P. 1960. The enzymatic synthesis of plasmalogens. J. Biol. Chem. 235:2590–2594.PubMedGoogle Scholar
  163. Klenk, E. 1969. On cerebrosides and gangliosides. Prog. Chem. Fats Other Lipids 10:409–431.Google Scholar
  164. Koeppen, A. H., Barron, K. D., and Mitzen, E. J. 1973. Fatty acid chain elongation in rat brain synaptosomes. Biochemistry 12:276–281.PubMedGoogle Scholar
  165. Kopaczyk, K. C., and Radin, N. S. 1965. In vivo conversions of cerebroside and ceramide in rat brain.J. Lipid Res. 6:140–145.PubMedGoogle Scholar
  166. Korey, S. R., and Orchen, M. 1959. Plasmalogens of the nervous system. I. Deposition in developing rat brain and incorporation of C14 isotope from acetate and palmitate into the α,β-unsaturated ether chain. Arch. Biochem. Biophys. 83:381–389.PubMedGoogle Scholar
  167. Kurooka, S., Hosoki, K., and Yoshimura, Y. 1972. Some properties of long chain fatty acyl-coenzyme A thioesterase in rat organs.J. Biochem. 71:625–634.PubMedGoogle Scholar
  168. Lapetina, E. G., and Hawthorne, J. N. 1971. The diglyceride kinase of rat cerebral cortex. Biochem. J. 122:171–179.PubMedGoogle Scholar
  169. Lapetina, E. G., and Michell, R. H. 1973. A membrane-bound activity catalysing phosphati-dylinositol breakdown to 1,2-diacylglycerol, d-myoinositol 1:2-cyclic phosphate and D- myoinositol 1-phosphate. Biochem. J. 131:433–442.PubMedGoogle Scholar
  170. LeBaron, F. N. 1970. Metabolism of myelin constituents. Handb. Neurochem. 3:561–573.Google Scholar
  171. Leibovitz, Z., and Gatt, S. 1968. Isolation of lysophospholipase, free of phospholipase activity, from rat brain. Biochim. Biophys. Acta 164:439–441.PubMedGoogle Scholar
  172. Leibovitz-BenGershon, Z., Kobiler, I., and Gatt, S. 1972. Lysophospholipases of rat brain. J. Biol. Chem. 247:6840–6847.PubMedGoogle Scholar
  173. Li, S.-C., and Li, Y.-T. 1974. Isolation and characterization of a heat-stable glycoprotein activating the hydrolysis of sphingoglycolipids. Fed. Proc. 33:1299. Abstr. 428.Google Scholar
  174. Li, Y.-T., Mazzotta, M. Y., Wan, C. -C., Orth, R., and Li, S.-C. 1973. Hydrolysis of Tay-Sachs ganglioside by β-hexosaminidase A of human liver and urine. J. Biol. Chem. 248:7512–7515.PubMedGoogle Scholar
  175. Maccioni, H. J., Arce, A., and Caputto, R. 1971. The biosynthesis of gangliosides. Labelling of rat brain gangliosides in vivo. Biochem. J. 125:1131–1137.Google Scholar
  176. Macdonald, R. C., and Mead, J. F. 1968. The alpha -oxidation system of brain microsomes. Cofactors for alpha -hydroxy acid decarboxylation. Lipids 3:275–283.PubMedGoogle Scholar
  177. Mandel, P., Nussbaum, J. L., Neskovic, N. M., Sarlieve, L. L., and Kurihara, T. 1972. Regulation of myelinogenesis. Adv. Enzyme Regul. 10:101–118.PubMedGoogle Scholar
  178. Mapes, C. A., Suelter, C. H., and Sweeley, C. C. 1973. Isolation and characterization of ceramidetrihexosidases (form A) from human plasma.J. Biol. Chem. 248:2471–2479.PubMedGoogle Scholar
  179. Marggraf, W-D., and Anderer, F. A. 1974. Alternative pathways in the biosynthesis of sphingomyelin and the role of phosphatidylcholine, CDPcholine and phosphorylcholine as precursors. Hoppe-Seyler’s Z. Physiol. Chem. 355:803–810.PubMedGoogle Scholar
  180. Mårtensson, E. 1969. Glycosphingolipids of animal tissue. Prog. Chem. Fats Other Lipids 10:367–407.Google Scholar
  181. Max, S. R., Maclaren, N. K., Brady, R. O., Bradley, R. M., Rennels, M. B., Tanaka, J., Garcia, J. H., and Cornblath, M. 1974. GM3 (hematoside) sphingolipodystrophy. New. Eng. J. Med. 291:929–931.PubMedGoogle Scholar
  182. McMurray, W. C. 1964a. Metabolism of phosphatides in developing rat brain—I. Incorporation of radioactive precursors.J. Neurochem. 11:287–299.PubMedGoogle Scholar
  183. McMurray, W. C. 1964b. Metabolism of phosphatides in developing rat brain—II. Labelling of plasmalogens and other alkali-stable lipids from radioactive cytosine nucleotides.J. Neurochem. 11:315–326.PubMedGoogle Scholar
  184. McMurray, W. C., and Magee, W. L. 1972. Phospholipid metabolism. Annu. Rev. Biochem. 41:129–160.PubMedGoogle Scholar
  185. McMurray, W. C., Strickland, K. P., Berry, J. F., and Rossiter, R. J. 1957. Incorporation of 32P-labelled intermediates into the phospholipids of cell-free preparations of rat brain. Biochem. J. 66:634–644.PubMedGoogle Scholar
  186. Mead, J. F., and Hare, R. S. 1971. Alpha oxidation of cerebronic acid in brains from scorbutic and ascorbic acid-supplemented guinea pigs. Biochem. Biophys. Res. Commun. 45:1451–1456.PubMedGoogle Scholar
  187. Mead, J. F., and Hare, R. S. 1973. Fe requirement for decarboxylation of alpha-hydroxy long chain fatty acids. J. Am. Oil Chem. Soc. 50:91A–92A (Abstr. 113).Google Scholar
  188. Mestrallet, M. G., Cumar, F. A., and Caputto, R. 1974. On the pathway of biosynthesis of trisialogangliosides. Biochem. Biophys. Res. Commun. 59:1–7.PubMedGoogle Scholar
  189. Michell, R. H. 1975. Inositol phospholipids and cell surface receptor function. Biochim. Biophys. Acta 415:81–147.PubMedGoogle Scholar
  190. Michell, R. H., Hawthorne, J. N., Coleman, R., and Karnovsky, M. L. 1970. Extraction of polyphosphoinositides with neutral and acidified solvents. A comparison of guinea-pig brain and liver, and measurements of rat liver inositol compounds which are resistant to extraction. Biochim. Biophys. Acta 210:86–91.PubMedGoogle Scholar
  191. Miller, E. K., and Dawson, R. M. C. 1972. Can mitochondria and synaptosomes of guinea-pig brain synthesize phospholipids? Biochem. J. 126:805–821.PubMedGoogle Scholar
  192. Mohrhauer, H., and Holman, R. T. 1963. Alteration of the fatty acid composition of brain lipids by varying levels of dietary essential fatty acids.J. Neurochem. 10:523–530.PubMedGoogle Scholar
  193. Moreli, P., and Braun, P. 1972. Biosynthesis and metabolic degradation of sphingolipids not containing sialic acid. J. Lipid Res. 13:293–310.Google Scholar
  194. Moreli, P., and Radin, N. S. 1969. Synthesis of cerebroside by brain from uridine diphosphate galactose and ceramide containing hydroxy fatty acid. Biochemistry 8:402–405.Google Scholar
  195. Moreli, P., and Radin, N. S. 1970. Specificity in ceramide biosynthesis from long chain bases and various fatty acyl coenzyme A’s by brain microsomes. J. Biol. Chem. 245:342–350.Google Scholar
  196. Moreli, P., Costantino-Ceccarini, E., and Radin, N. S. 1970. The biosynthesis by brain microsomes of cerebrosides containing nonhydroxy fatty acids. Arch. Biochem. Biophys. 141:738–748.Google Scholar
  197. Moser, H. W., and Karnovsky, M. L. 1959. Studies on the biosynthesis of glycolipids and other lipids of the brain. J. Biol. Chem. 234:1990–1997.PubMedGoogle Scholar
  198. Muehlenberg, B. A., Sribney, M., and Duffe, M. K. 1972. Occurrence and biosynthesis of ceramide phosphorylethanolamine in chicken and rat liver. Can. J. Biochem. 50:166–173.PubMedGoogle Scholar
  199. Murad, S., and Kishimoto, Y. 1975. α Hydroxylation of lignoceric acid to cerebronic acid during brain development.J. Biol. Chem. 250:5841–5846.PubMedGoogle Scholar
  200. Muramatsu, T., and Schmid, H. H. O. 1973. Metabolism of l-hydroxy-2-ketoheptadecane in myelinating brain. Biochim. Biophys. Acta 296:265–270.PubMedGoogle Scholar
  201. Natarajan, V., and Sastry, P. S. 1973. In vitro studies on the acylation of 1-O-alkenyl glycero-3-phosphorylethanolamine by rat brain preparations. FEB S Lett. 32:9–12.Google Scholar
  202. Natarajan, V., and Sastry, P. S. 1974. Enzymatic acylation of 1-alkyl-, 1-alkenyl- and 1-acyl glycero-3-phosphorylethanolamine in developing rat brain.J. Neurochem. 23:187–192.PubMedGoogle Scholar
  203. Neskovic, N. M., Sarlieve, L. L., and Mandel, P. 1974. Purification and properties of UDP-galactosexeramide galactosyltransferase from rat brain microsomes. Biochim. Biophys. Acta 334:309–315.Google Scholar
  204. Nicholas, H. J., and Thomas, B. E. 1959. Intracerebral incorporation of [2-14C]mevalonic acid into adult rat brain squalene and cholesterol. Biochim. Biophys. Acta 36:583–585.PubMedGoogle Scholar
  205. Nicholas, H. J., and Thomas, B. E. 1961. Cholesterol metabolism and the blood-brain barrier: An experimental study with [2-14C]-sodium acetate. Brain 84:320–328.PubMedGoogle Scholar
  206. O’Brien, J. F., and Geison, R. L. 1971. The mass distribution of the phosphatidylcholines in subcellular fractions of rat brain. J. Neurochem. 18:1615–1623.PubMedGoogle Scholar
  207. O’Brien, J. S., and Sampson, E. L. 1965. Fatty acid and fatty aldehyde composition of the major brain lipids in normal human gray matter, white matter, and myelin.J. Lipid Res. 6:545–551.PubMedGoogle Scholar
  208. Ong, D. E., and Brady, R. N. 1973. In vivo studies on the introduction of the 4-t-double bond of the sphingenine moiety of rat brain ceramides. J. Biol. Chem. 248:3884–3888.PubMedGoogle Scholar
  209. Page, M. A., Krebs, H. A., and Williamson, D. H. 1971. Activities of enzymes of ketone-body utilization in brain and other tissues of suckling rats. Biochem. J. 121:49–53.PubMedGoogle Scholar
  210. Paltauf, F. 1971. Biosynthesis of plasmalogens from alkyl- and alkyl-acyl-glycerophosphoryl ethanolamine in the rat brain. FEBS Lett. 17:118–120.PubMedGoogle Scholar
  211. Paltauf, F. 1973. Synthesis of alkoxylipids. Chem. Phys. Lipids 11:270–294.Google Scholar
  212. Paltauf, F., and Holasek, A. 1973. Enzymatic synthesis of plasmalogens. Characterization of the 1-O-alkyl-2-acyl-sn-glycero-3-phosphorylethanolamine desaturase from mucosa of hamster small intestine.J. Biol. Chem. 248:1609–1615.PubMedGoogle Scholar
  213. Paltauf, F., Prough, R. A., Masters, B. S. S., and Johnston, J. M. 1974. Evidence for the participation of cytochrome b 5 in plasmalogen biosynthesis.J. Biol. Chem. 249:2661–2662.Google Scholar
  214. Pfleger, R. O., Piantadosi, C., and Snyder, F. 1967. The biocleavage of isomeric glyceryl ethers by soluble liver enzymes in a variety of species. Biochim. Biophys. Acta 144:633–648.PubMedGoogle Scholar
  215. Pieringer, R. A., and Hokin, L. E. 1962. Biosynthesis of lysophosphatidic acid from monoglyc-eride and adenosine triphosphate. J. Biol. Chem. 237:653–658.PubMedGoogle Scholar
  216. Pollock, R. J., Hajra, A. K., and Agranoff, B. W. 1975. The relative utilization of the acyl dihydroxyacetone phosphate and glycerol phosphate pathways for synthesis of glyceroli-pids in various tumors and normal tissues. Biochim. Biophys. Acta 380:421–435.PubMedGoogle Scholar
  217. Porcellati, G. 1972. Aspects of regulatory mechanisms in phospholipid biosynthesis of nervous tissue. Adv. Enzyme Regul. 10:83–100.PubMedGoogle Scholar
  218. Porcellati, G., Biasion, M. G., and Pirotta, M. 1970. The labeling of brain ethanolamine phosphoglycerides from cytidine diphosphate ethanolamine in vitro. Lipids 5:734–742.Google Scholar
  219. Porcellati, G., Arienti, G., Pirotta, M., and Giorgini, D. 1971. Base-exchange reactions for the synthesis of phospholipids in nervous tissue: The incorporation of serine and ethanolamine into the phospholipids of isolated brain microsomes. J. Neurochem. 18:1395–1417.PubMedGoogle Scholar
  220. Portman, O. W., Illingworth, D. F., and Alexander, M. 1973. Lysolecithin and sphingosine-phosphorylcholine in the metabolism of brain phospholipids of the rhesus monkey (Macaca mulatta): Effects of development. J. Neurochem. 20:1659–1667.PubMedGoogle Scholar
  221. Possmayer, F., Meiners, B., and Mudd, J. B. 1973. Regulation by cytidine nucleotides of the acylation of sn-[14C] glycerol 3-phosphate. Regional and subcellular distribution of the enzymes responsible for phosphatidic acid synthesis de novo in the central nervous system of the rat. Biochem. J. 132:381–394.PubMedGoogle Scholar
  222. Pritchard, E. T., and Nichol, N. E. 1964. Cholesterol esterase activity in developing rat brain. Biochim. Biophys. Acta 84:781–782.PubMedGoogle Scholar
  223. Prottey, C., Salway, J. G., and Hawthorne, J. N. 1968. The structures of enzymically produced diphosphoinositide and triphosphoinositide. Biochim. Biophys. Acta 164:238–251.PubMedGoogle Scholar
  224. Radin, N. S., and Akahori, Y. 1961. Fatty acids of human brain cerebrosides.J. Lipid Res. 2:335–341.Google Scholar
  225. Radin, N. S. Brenkert, A., Arora, R. C., Sellinger, O. Z., and Flangas, A. L. 1972. Brain Res. 39:163–169.PubMedGoogle Scholar
  226. Radominska-Pyrek, A., and Horrocks, L. A. 1972. Enzymic synthesis of 1-alkyl-2-acyl-sn-glycero-3-phosphorylethanolamines by the CDP-ethanolamine:1-radyl-2-acyl-sn-glycerol ethanolaminephosphotransferase from microsomal fraction of rat brain. J. Lipid Res. 13:580–587.PubMedGoogle Scholar
  227. Raghavan, S., Rhoads, D., and Kanfer, J. 1972. In vitro incorporation of [14C] serine, [14C]ethanolamine, and [14C]choline into phospholipids of neuronal and glial-enriched fractions from rat brain by base exchange. J. Biol. Chem. 247:7153–7156.PubMedGoogle Scholar
  228. Ramsey, R. B., and Nicholas, H. J. 1972. Brain lipids. Adv. Lipid Res. 10:143–232.PubMedGoogle Scholar
  229. Ramsey, R. B., Jones, J. P., and Nicholas, H. J. 1971a. The biosynthesis of cholesterol and other sterols by brain tissue. Distribution in subcellular fractions as a function of time after intracerebral injection of [2-14C]-mevalonic acid.J. Neurochem. 18:1485–1493.PubMedGoogle Scholar
  230. Ramsey, R. B., Jones, J. P., Naqvi, S. H. M., and Nicholas, H. J. 1971b. The biosynthesis of cholesterol and other sterols by brain tissue: I. Subcellular biosynthesis in vitro. Lipids 6:154–161.PubMedGoogle Scholar
  231. Ramsey, R. B., Aexel, R. T., and Nicholas, H. J. 1971c. Formation of methyl sterols in brain cholesterol biosynthesis. Sterol formation in vitro and in vivo in adult rat brain. J. Biol. Chem. 246:6393–6400.PubMedGoogle Scholar
  232. Ramsey, R. B., Aexel, R. T., Jones, J. P., and Nicholas, H. J. 1972. Formation of methyl sterols in brain cholesterol biosynthesis. Sterol formation in vitro in actively myelinating rat brain.J. Biol. Chem. 247:3471–3475.PubMedGoogle Scholar
  233. Roberti, R., Binaglia, L., Francescangeli, E., Goracci, G., and Porcellati, G. 1975. Enzymic synthesis of 1-alkyl-2-acyl-sn-glycero-3-phosphorylethanolamine through ethanolamine-phosphotransferase activity in the neuronal and glial cells of rabbit in vitro. Lipids 10:121–127.PubMedGoogle Scholar
  234. Robinson, D. 1974a. Multiple forms of lysosomal enzymes. Statement of the problem, pp. 217 – 226. In J. M. Tager, G. J. M. Hooghwinkel, and W. Th. Daems (eds.). Enzyme Therapy in Lysosomal Storage Diseases. North-Holland Publishing Company, Amsterdam.Google Scholar
  235. Robinson, D. 1974b. Multiple forms of glycosidases in the normal and pathological states. Enzyme 18:114–135.PubMedGoogle Scholar
  236. Rock, C.O., and Snyder, F. 1974. Biosynthesis of 1-alkyl-sn-glycero-3-phosphate via adenosine triphosphate:1-alkyl-sn-glycerol phosphotransferase. J. Biol. Chem. 249:5382–5387.PubMedGoogle Scholar
  237. Roots, B. I., and Johnston, P. V. 1968. Plasmalogens of the nervous system and environmental temperature. Comp. Biochem. Physiol. 26:553–560.PubMedGoogle Scholar
  238. Rosenberg, A. 1970. Sphingomyelin: Enzymatic reactions. Handb. Neurochem. 3:453–466.Google Scholar
  239. Rossiter, R. J., and Strickland, K. P. 1970. Metabolism of phosphoglycerides. Handb. Neurochem. 3:467–489.Google Scholar
  240. Saito, M., and Kanfer, J. 1973. Solubilization and properties of a membrane-bound enzyme from rat brain catalyzing a base-exchange reaction. Biochem. Biophys. Res. Commun. 53:391–398.PubMedGoogle Scholar
  241. Saito, M., and Kanfer, J. 1975. Phosphatidohydrolase activity in a solubilized preparation from rat brain particulate fraction. Arch. Biochem. Biophys. 169:318–323.PubMedGoogle Scholar
  242. Saito, M., Bourque, E., and Kanfer, J. 1975. Studies on base-exchange reactions of phospholipids in rat brain particles and a “solubilized” system. Arch. Biochem. Biophys. 169:304–317.PubMedGoogle Scholar
  243. Salway, J. G., Kai, M., and Hawthorne, J. N. 1967. Triphosphoinositide Phosphomonoesterase activity in nerve cell bodies, neuroglia and subcellular fractions from whole rat brain. J. Neurochem. 14:1013–1024.PubMedGoogle Scholar
  244. Scallen, T. J., Condie, R. M., and Schroepfer, J. 1962. Inhibition by triparanol of cholesterol formation in the brain of the newborn mouse.J. Neurochem. 9:99–103.PubMedGoogle Scholar
  245. Scallen, T. J., Srikantaiah, M. V., Skrdlant, H. B., and Hansbury, E. 1972. Characterization of native sterol carrier protein. FEBS Lett. 25:227–233.PubMedGoogle Scholar
  246. Schacht, J., and Agranoff, B. W. 1974. Interaction of cholinergic agents with phospholipid metabolism in guinea pig cortex synaptosomes, pp. 121–129. In E. de Robertis and J. Schacht (eds.). Neurochemistry of Cholinergic Receptors. Raven Press, New York.Google Scholar
  247. Schettler, G. 1967. Lipids and Lipidoses. Springer-Verlag, New York. 622 pp.Google Scholar
  248. Schmid, H. H. O., and Takahashi, T. 1970. Reductive and oxidative biosynthesis of plasmalogens in myelinating brain.J. Lipid Res. 11:412–419.PubMedGoogle Scholar
  249. Schmid, H. H. O., Muramatsu, T., and Su, K. L. 1972. On the nonconversion of alkyl acyl choline phosphatides to the corresponding plasmalogens in myelinating rat brain. Biochim. Biophys. Acta 270:317–323.PubMedGoogle Scholar
  250. Schmid, H. H. O., Bandi, P. C., Chang, N., Madson, T. H., and Baumann, W. J. 1975. Ether lipid metabolism. Incorporation of O-hexadecyl ethanediol into rat brain lipids. Biochim. Biophys. Acta 409:311–319.PubMedGoogle Scholar
  251. Schneider, P. B., and Kennedy, E. P. 1967. Sphingomyelinase in normal human spleens and in spleens from subjects with Niemann-Pick disease. J. Lipid Res. 8:202–209.PubMedGoogle Scholar
  252. Scot, T. G., and Barber, V. C. 1964. An enzyme histochemical and biochemical study of the effect of an inhibitor of cholesterol synthesis on myelinating mouse brain. J. Neurochem. 11:423–429.Google Scholar
  253. Shah, S. N. 1971. Glycosyl transferases of microsomal fractions from brain: Synthesis of glucosylceramide and galactosylceramide during development and the distribution of glucose and galactose transfer in white and gray matter. J. Neurochem. 18:395–402.PubMedGoogle Scholar
  254. Shah, S. N. 1972. Conversion of squalene into sterols by microsomal fractions from brains of developing rats. FEBS Lett. 20:75–78.PubMedGoogle Scholar
  255. Shah, S. N. 1973. UDP-glucose: Ceramide glycosyltransferase of rat brain: An association with smooth microsomes and requirement of an intact membrane for enzyme activity. Arch. Biochem. Biophys, 159:143–150.PubMedGoogle Scholar
  256. Sinclair, A. J. 1975. Incorporation of radioactive polyunsaturated fatty acids into liver and brain of developing rat. Lipids 10:175–184.PubMedGoogle Scholar
  257. Snyder, F. 1972. The enzymic pathways of ether-linked lipids and their precursors, pp. 121 – 156. In F. Snyder (ed.). Ether Lipids. Chemistry and Biology. Academic Press, New York.Google Scholar
  258. Snyder, F., Wykle, R. L., and Malone, B. 1969. A new metabolic pathway: Biosynthesis of alkyl ether bonds from glyceraldehyde-3-phosphate and fatty alcohols by microsomal enzymes. Biochem. Biophys. Res. Commun. 34:315–321.PubMedGoogle Scholar
  259. Snyder, F., Rainey, W. T., Jr., Blank, M. L., and Christie, W. H. 1970. The source of oxygen in the ether bond of glycerolipids. 18O studies. J. Biol. Chem. 245:5853–5856.PubMedGoogle Scholar
  260. Snyder, F., Blank, M. L., and Wykle, R. L. 1971a. The enzymic synthesis of ethanolamine plasmalogens. J. Biol. Chem. 246:3639–3645.PubMedGoogle Scholar
  261. Snyder, F., Hibbs, M., and Malone, B. 1971b. Enzymie synthesis of O-alkyl glycerolipids in brain and liver of rats during fetal and postnatal development. Biochim. Biophys. Acta 231:409–411.PubMedGoogle Scholar
  262. Sribney, M., and Kennedy, E. P. 1958. The enzymatic synthesis of sphingomyelin, J. Biol. Chem. 233:1315–1322.PubMedGoogle Scholar
  263. Stanbury, J. B., Wyngaarden, J. B., and Fredrickson, D. S. (eds.) 1972. The Metabolic Basis of Inherited Disease. McGraw-Hill, New York, 1778 pp.Google Scholar
  264. Stoffel, W. 1971. Sphingolipids. Annu. Rev. Biochem. 40:57–82.PubMedGoogle Scholar
  265. Stoffel, W., and Assmann, G. 1972. On the metabolism of sphinganyl- and sphingenyl-1-phosphorylcholine. Studies in vitro and in vivo. Hoppe-Seyler’s Z. Physiol. Chem. 353:65–74.PubMedGoogle Scholar
  266. Stoffel, W., and Bister, K. 1974. Studies on the desaturation of sphinganine. Ceramide and sphingomyelin metabolism in the rat and in BHK 21 cells in tissue culture. Hoppe-Seyler’s Z. Physiol. Chem. 355:911–923.PubMedGoogle Scholar
  267. Stoffel, W., and LeKim, D. 1971. Studies on the biosynthesis of plasmalogens. Precursors in the biosynthesis of plasmalogens: On the stereospecificity of the biochemical dehydro-genation of the 1-O-alkyl glyceryl to the 1-O-alk-1’-enyl glyceryl ether bond. Hoppe-Seyler’s Z. Physiol. Chem. 352:501–511.PubMedGoogle Scholar
  268. Stoffel, W., LeKim, D., and Heyn, G. 1970. Metabolism of sphingosine bases, XIV. Sphinganine (dihydrosphingosine), an effective donor of the alk-1’-enyl chain of plasmalogens. Hoppe-Seyler’s Z. Physiol. Chem. 351:875–883.PubMedGoogle Scholar
  269. Su, K. L., and Schmid, H. H. O. 1972. Metabolism of long-chain polyunsaturated alcohols in myelinating brain. J. Lipid Res. 13:452–457.PubMedGoogle Scholar
  270. Sun, G. Y. 1972. Effects of a fatty acid deficiency on lipids of whole brain, microsomes, and myelin in the rat. J. Lipid Res. 13:56–62.PubMedGoogle Scholar
  271. Sun, G. Y., and Horrocks, L. A. 1973. Metabolism of palmitic acid in the subcellular fractions of mouse brain. J. Lipid Res. 14:206–214.PubMedGoogle Scholar
  272. Sun, G. Y., Winniczek, H., Go, J., and Sheng, S. L. 1975. Essential fatty acid deficiency: Metabolism of 20:3(n-9) and 22:3(n-9) of major phosphoglycerides in subcellular fractions of developing and mature mouse brain. Lipids 10:365–373.Google Scholar
  273. Suzuki, K. 1965. The pattern of mammalian brain gangliosides-III. Regional and developmental differences. J. Neurochem. 12:969–979.Google Scholar
  274. Suzuki, K., and Chen, G. C. 1967. Brain ceramide hexosides in Tay-Sachs disease and generalized gangliosidosis (GM2-gangliosidosis).J. Lipid Res. 8:105–113.PubMedGoogle Scholar
  275. Suzuki, Y., and Suzuki, K. 1974a. Glycosphingolipid β-galactosidases. I. Standard assay procedures and characterization by electrofocusing and gel nitration of the enzymes in normal human liver. J. Biol. Chem. 249:2098–2104.PubMedGoogle Scholar
  276. Suzuki, Y., and Suzuki, K. 1974b. Glycosphingolipid β-galactosidase. H. Electrofocusing characterization of the enzymes in human globoid cell leukodystrophy (Krabbe’s disease).J. Biol. Chem. 249:2105–2108.PubMedGoogle Scholar
  277. Suzuki, Y., and Suzuki, K. 1974c. Glycosphingolipid β-galactosidase. IV. Electrofocusing characterization in G M 1 -gangliosidosis. J. Biol. Chem. 249:2113–2117.PubMedGoogle Scholar
  278. Svennerholm, L. 1963. Chromatographic separation of human brain gangliosides. J. Neurochem. 10:613–623.PubMedGoogle Scholar
  279. Svennerholm, L. 1970. Ganglioside metabolism. Compr. Biochem. 18:201–227.Google Scholar
  280. Svennerholm, L., and Ställberg-Stenhagen, S. 1968. Changes in the fatty acid composition of cerebrosides and sulfatides of human nervous tissue with age.J. Lipid Res. 9:215–225.PubMedGoogle Scholar
  281. Sweeley, C. C. (ed.) 1970. Chemistry and metabolism of sphingolipids. Chem. Phys. Lipids 5:1–300.Google Scholar
  282. Tabakoff, B., and Erwin, V. G. 1970. Purification and characterization of a reduced nicotinamide adenine dinucleotide phosphate-linked aldehyde reductase from brain.J. Biol. Chem. 245:3263–3268.PubMedGoogle Scholar
  283. Tager, J. M., Hooghwinkel, G. J. M., and Daems, W. Th. (eds.). 1974. Enzyme Therapy in Lysosomal Storage Diseases. North Holland Publishing Company, Amsterdam. 308 pp.Google Scholar
  284. Taki, T., and Matsumoto, M. 1973. Study of exchange reaction between phospholipid-base and free base: Incorporation of L-serine into phospholipid and decarboxylation of phosphatidylserine. Jap. J. Exp. Med. 43:219–224.PubMedGoogle Scholar
  285. Tallman, J. F. 1974. Hexosaminidases and ganglioside catabolism in the GM2-gangliosides. Chem. Phys. Lipids 13:292–304.PubMedGoogle Scholar
  286. Tallman, J. F., and Brady, R. O. 1972. The catabolism of Tay-Sachs ganglioside by rat brain lysosomes. J. Biol. Chem. 247:7570–7575.PubMedGoogle Scholar
  287. Tallman, J. F., Pentchev, P. G., and Brady, R. O. 1974. An enzymological approach to the lipidoses. Enzyme 18:136–149.PubMedGoogle Scholar
  288. Tatsumi, K., Kishimoto, Y., and Hignite, C. 1974. Stereochemical aspects of synthetic and naturally occurring 2-hydroxy fatty acids. Arch. Biochem. Biophys. 165:656–664.PubMedGoogle Scholar
  289. Tatsumi, K., Murad, S., and Kishimoto, Y. 1975. Mechanism and stereospecificity of α-hydroxylation of lignoceric acid in rat brain. Arch. Biochem. Biophys. 171:87–92.PubMedGoogle Scholar
  290. Thompson, W. 1967. The hydrolysis of monophosphoinositide by extracts of brain. Can. J. Biochem. 45:853–861.PubMedGoogle Scholar
  291. Thompson, R. H. S. 1972. Fatty acid metabolism in multiple sclerosis, pp. 103–111. In J. Ganguly and R. M. S. Smellie (eds.). Current Trends in the Biochemistry of Lipids. Academic Press, New York.Google Scholar
  292. Thompson, W., and Dawson, R. M. C. 1964a. The hydrolysis of triphosphoinositide by extracts of ox brain. Biochem. J. 91:233–236.PubMedGoogle Scholar
  293. Thompson, W., and Dawson, R. M. C. 1964b. Triphosphoinositide Phosphomonoesterase of brain tissue. Biochem. J. 91:244–250.PubMedGoogle Scholar
  294. Ullman, M. D., and Radin, N. S. 1974. The enzymatic formation of sphingomyelin from ceramide and lecithin in mouse liver.J. Biol. Chem. 249:1506–1512.PubMedGoogle Scholar
  295. Van den Bosch, H. 1974. Phosphoglyceride metabolism. Annu. Rev. Biochem. 43:243–277.PubMedGoogle Scholar
  296. Volk, B. W., and Aronson, S. M. (eds.) 1972. Sphingolipids, Sphingolipidoses, and Allied Disorders. Plenum Press, New York. 691 pp.Google Scholar
  297. Volpe, J. J., and Kishimoto, Y. 1972. Fatty acid synthetase of brain: Development, influence of nutritional and hormonal factors and comparison with liver enzyme.J. Neurochem. 19:737–753.PubMedGoogle Scholar
  298. Volpe, J. J., and Vagelos, P. R. 1973a. Saturated fatty acid biosynthesis and its regulation. Annu. Rev. Biochem. 42:21–60.PubMedGoogle Scholar
  299. Volpe, J. J., and Vagelos, P. R. 1973b. Fatty acid synthetase of mammalian brain, liver and adipose tissue. Regulation by prosthetic group turnover. Biochim. Biophys. Acta 326:293–304.PubMedGoogle Scholar
  300. Volpe, J. J., Lyles, T. O., Roncan, D. A. K., and Vagelos, P. R. 1973. Fatty acid synthetase of developing brain and liver. Content, synthesis, and degradation during development. J. Biol. Chem. 248:2502–2513.PubMedGoogle Scholar
  301. Waku, K., and Lands, W. E. M. 1968. Acyl coenzyme A:1-alkenyl-glycero-3-phosphorylcho-line acyltransferase action in plasmalogen biosynthesis.J. Biol. Chem. 243:2654–2659.PubMedGoogle Scholar
  302. Walker, B. L. 1967. Maternal diet and brain fatty acids in young rats. Lipids 2:497–500.PubMedGoogle Scholar
  303. Webster, G. P. 1970. Phospholipase A activities in nervous tissue. Biochem. J. 117:10P–11P.PubMedGoogle Scholar
  304. Wenger, D. A. 1974. Studies on galactosyl ceramide and lactosyl ceramide β-galactosidase. Chem. Phys. Lipids 13:327–339.PubMedGoogle Scholar
  305. Wiegandt, H. 1971. Glycosphingolipids. Adv. Lipid Res. 9:249–289.Google Scholar
  306. Williams, D. J., Spanner, S., and Ansell, G. B. 1973. A phospholipase C in brain tissue active towards phosphatidylethanolamine. Biochem. Soc. Trans. 1:466–467.Google Scholar
  307. Woelk, H., and Porcellati, G. 1973. Subcellular distribution and kinetic properties of rat brain phospholipases A1 and A2. Hoppe-Seyler’s Z. Physiol. Chem. 354:90–100.PubMedGoogle Scholar
  308. Woelk, H., Fürniss, H., and Debuch, H. 1972. Enzymkinetische Untersuchungen Liver Phospholipase A1 Dargestellt aus Menschenhirn. Hoppe-Seyler’s Z. Physiol. Chem. 353:1111–1119.PubMedGoogle Scholar
  309. Woelk, H., Goracci, G., Gaiti, A., and Porcellati, G. 1973. Phospholipase A1 and A2 activities of neuronal and glial cells of the rabbit brain. Hoppe-Seyler’s Z. Physiol. Chem. 354:729–736.PubMedGoogle Scholar
  310. Woelk, H., Goracci, G., and Porcellati, G. 1974. The action of brain phospholipases A2 on purified, specifically labelled 1,2-diacyl-, 2-acyl-1-alk-1′-enyl- and 2-acyl-1-alkyl-ns-glycero-3-phosphorylcholine. Hoppe-Seyler’s Z. Physiol. Chem. 355:75–81.PubMedGoogle Scholar
  311. Wykle, R. L., and Lockmiller, J. M. S. 1975. The biosynthesis of plasmalogens by rat brain: Involvement of the microsomal electron transport system. Biochim. Biophys. Acta 380:291–298.PubMedGoogle Scholar
  312. Wykle, R. L., and Schremmer, J. M. 1974. A lysophospholipase D pathway in the metabolism of ether-linked lipids in brain microsomes. J. Biol. Chem. 249:1742–1746.PubMedGoogle Scholar
  313. Wykle, R. L., and Snyder, F. 1976. Microsomal enzymes involved in the metabolism of ether-linked glycerolipids and their precursors in mammals, pp. 87–117. In A. Martonosi (ed.). The Enzymes of Biological Membranes, Vol. 2. Plenum Press, New York.Google Scholar
  314. Wykle, R. L., Blank, M. L., Malone, B., and Snyder, F. 1972. Evidence for a mixed function oxidase in the biosynthesis of ethanolamine plasmalogens from 1-alkyl-2-acyl-sn-glycero-3-phosphorylethanolamine. J. Biol. Chem. 247:5442–5447.PubMedGoogle Scholar
  315. Yavin, E., and Gatt, S. 1969. Enzymatic hydrolysis of sphingolipids VII. Further purification and properties of rat brain ceramidase. Biochemistry 8:1692–1698.PubMedGoogle Scholar
  316. Yavin, E., and Gatt, S. 1972a. Oxygen-dependent cleavage of the vinyl-ether linkage of plasmalogens. 1. Cleavage by rat-brain supernatant. Eur. J. Biochem. 25:431–436.PubMedGoogle Scholar
  317. Yavin, E., and Gatt, S. 1972b. Oxygen-dependent cleavage of the vinyl-ether linkage of plasmalogens. 2. Identification of the low-molecular-weight active component and the reaction mechanism. Eur. J. Biochem. 25:437–446.PubMedGoogle Scholar
  318. Yavin, E., and Menkes, J. H. 1974a. Polyenoic acid metabolism in cultured dissociated brain cells.J. Lipid Res. 15:152–157.Google Scholar
  319. Yavin, E., and Menkes, J. H. 1974b. Incorporation and metabolism of fatty acids by cultured dissociated cells from rat cerebrum. Lipids 9:248–253.PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1977

Authors and Affiliations

  • Robert L. Wykle
    • 1
  1. 1.Medical and Health Sciences DivisionOak Ridge Associated UniversitiesOak RidgeUSA

Personalised recommendations