Introduction: General Pathways in the Metabolism of Lipids in Mammalian Tissues

  • L. M. G. Van Golde
  • S. G. Van den Bergh
Part of the Monographs in Lipid Research book series (MLR)


It is the purpose of this introductory chapter to provide an outline of the major pathways involved in the biosynthesis and catabolism of fatty acids, glycerolipids, sphingomyelin, and cholesterol in order to prevent unnecessary duplication in the chapters that cover the metabolism of lipids in the various individual tissues. Only those reactions, generally accepted to occur in most mammalian tissues, will be briefly discussed in this introduction. Pathways that occur only in some particular tissues or have been studied in depth in one particular tissue will be mentioned in the relevant chapters.


General Pathway Mammalian Tissue Fatty Acid Synthesis Phosphatidic Acid Pancreatic Lipase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aas, M. 1971. Organ and subcellular distribution of fatty acid activating enzymes in the rat. Biochim. Biophys. Acta 231:32–47.PubMedGoogle Scholar
  2. Akino, T., Yamazaki, I., and Abe, M. 1972. Metabolic fate of lysolecithin injected into rats. TohokuJ. Exp. Med. 108:133–139.Google Scholar
  3. Ansell, G. B., and Spanner, S. 1965. The magnesium-ion-dependent cleavage of the vinyl ether linkage of brain ethanolamine plasmalogen. Biochem. J. 94:252–258.PubMedGoogle Scholar
  4. Beattie, D. S. 1968. The submitochondrial distribution of the fatty acid oxidizing system in rat liver mitochondria. Biochem. Biophys. Res. Commun. 30:57–62.PubMedGoogle Scholar
  5. Bhaduri, A., and Srere, P. A. 1963. The incorporation of citrate carbon into fatty acids. Biochim. Biophys. Acta 70:221–230.PubMedGoogle Scholar
  6. Biale, Y., Gorin, E., and Shafrir, E. 1968. Characterization of tissue lipolytic and esterolytic activities cleaving full and partial glycerides. Biochim. Biophys. Acta 152:28–39.PubMedGoogle Scholar
  7. Bjerve, K. S. 1973. The Ca2+-dependent biosynthesis of lecithin, phosphatidylethanolamine and phosphatidylserine in rat liver subcellular particles. Biochim. Biophys. Acta 296:549–562.PubMedGoogle Scholar
  8. Bjornstad, P., and Bremer, J. 1966. In vivo studies on pathways for the biosynthesis of lecithin in the rat. J. Lipid Res. 7:38–45.PubMedGoogle Scholar
  9. Bloch, K. 1965. The biological synthesis of cholesterol. Science 150:19–28.PubMedGoogle Scholar
  10. Bloch, K. 1969. Enzymatic synthesis of monounsaturated fatty acids. Accounts Chem. Res. 2:193–202.Google Scholar
  11. Borkenhagen, L. F., Kennedy, E. P., and Fielding, L. 1961. Enzymatic formation and decarboxylation of phosphatidylserine. J. Biol. Chem. 236:PC 28.Google Scholar
  12. Bremer, J. 1962. Carnitine in intermediary metabolism. The metabolism of fatty acid esters of carnitine by mitochondria. J. Biol. Chem. 237:3628–3632.PubMedGoogle Scholar
  13. Bremer, J., and Greenberg, D.M. 1961. Methyl transferring enzyme system of microsomes in the biosynthesis of lecithin (phosphatidylcholine). Biochim. Biophys. Acta 46:205–216.Google Scholar
  14. Carter, J. R., and Kennedy, E. P. 1966. Enzymatic synthesis of cytidine diphosphate diglycer-ide. J. Lipid Res. 7:678–683.PubMedGoogle Scholar
  15. Colodzin, M., and Kennedy, E. P. 1965. Biosynthesis of diphosphoinositide in brain. J. Biol. Chem. 240:3771–3780.PubMedGoogle Scholar
  16. Crane, F. L., and Beinert, H. 1956. On the mechanism of dehydrogenation of fatty acyl derivatives of coenzyme A. II. The electron-transferring flavoprotein. J. Biol. Chem. 218:717–731.PubMedGoogle Scholar
  17. De Haas, G. H., Sarda, L., and Roger, J. 1965. Positional specific hydrolysis of phospholipids by pancreatic lipase. Biochim. Biophys. Acta 106:638–640.PubMedGoogle Scholar
  18. De Haas, G. H., Postema, N. M., Nieuwenhuizen, W., and Van Deenen, L. L. M. 1968. Purification and properties of phospholipase A from porcine pancreas. Biochim. Biophys. Acta 159:103–117.PubMedGoogle Scholar
  19. De Jong, J. G. N., Van den Bosch, H., Rijken, D., and Van Deenen, L. L. M. 1974. Studies on lysophospholipases. in. The complete purification of two proteins with lysophospholi-pase activity from beef liver. Biochim. Biophys. Acta 369:50–63.PubMedGoogle Scholar
  20. Desnuelle, P., and Savary, P. 1963. Specificities of lipases. J. Lipid Res. 4:369–384.PubMedGoogle Scholar
  21. Dietschy, J. M., and Wilson, J. D. 1968. Cholesterol synthesis in the squirrel monkey: relative rates of synthesis in various tissues and mechanisms of control. J. Clin. Invest. 47:166–181.PubMedGoogle Scholar
  22. Di Mari, S. J., Brady, R. N., and Snell, E. E. 1971. Biosynthesis of sphingolipid bases. IV. The biosynthetic origin of sphingosine in Hansenula ciferri. Arch. Biochem. Biophys. 143:553–565.PubMedGoogle Scholar
  23. Eggerer, H., Stadtmann, E. R., Overath, P., and Lynen, F. 1960. Zum Mechanismus der durch Cobalamin-Coenzym katalysierten Umlagerung von Methylmalonyl-CoA in Succi-nyl-CoA. Biochem. Z. 333:1–9.PubMedGoogle Scholar
  24. Erbland, J. F., and Marinetti, G. V. 1965. The enzymatic acylation and hydrolysis of lysolecithin. Biochim. Biophys. Acta 106:128–138.PubMedGoogle Scholar
  25. Flavin, M., and Ochoa, S. 1957. Metabolism of propionic acid in animal tissues. I. Enzymatic conversion of propionate to succinate. J. Biol. Chem. 229:965–979.PubMedGoogle Scholar
  26. Frantz, I. D., and Schroepfer, G. J. 1967. Sterol biosynthesis. Ann. Rev. Biochem. 36:691–726.PubMedGoogle Scholar
  27. Friedberg, S. J., and Heifetz, A. 1973. Hydrogen exchange in the synthesis of glyceryl ether and in the formation of dihydroxyacetone in Tetrahymena pyriformis. Biochemistry 12:1100–1106.PubMedGoogle Scholar
  28. Friedberg, S. J., and Heifetz, A. 1975. The formation of tritiated O-alkyl lipid from acyldihy-droxyacetone phosphate in the presence of tritiated water. Biochemistry 14:570–574.PubMedGoogle Scholar
  29. Friedberg, S. J., Heifetz, A., and Greene, R. C. 1971. Loss of hydrogen from dihydroxyacetone phosphate during glyceryl ether synthesis. J. Biol. Chem. 246:5822–5827.PubMedGoogle Scholar
  30. Fritz, I. B. 1963. Carnitine and its role in fatty acid metabolism. Adv. Lipid Res. 1:285–334.PubMedGoogle Scholar
  31. Fritz, I. B., and Yue, K. T. N. 1963. Long-chain carnitine acyltransferase and the role of acylcarnitine derivatives in the catalytic increase of fatty acid oxidation induced by carnitine. J. Lipid Res. 4:279–288.PubMedGoogle Scholar
  32. Gatt, S., and Barenholz, Y. 1973. Enzymes of complex lipid metabolism. Ann. Rev. Biochem. 42:61–90.PubMedGoogle Scholar
  33. Gaylor, J. L. 1974. Enzymes of sterol biosynthesis. MTP Int. Rev. Sci. (Biochemistry Series I) 4:1–37.Google Scholar
  34. Green, D. E. 1954. Fatty acid oxidation in soluble systems of animal tissues. Biol. Rev. Cambridge Phil. Soc. 29:330–366.Google Scholar
  35. Green, D. E., Goldman, D. S., Mii, S., and Beinert, H. 1953. The acetoacetate activation and cleavage enzyme system. J. Biol. Chem. 202:137–150.PubMedGoogle Scholar
  36. Hajra, A. K. 1968a. Biosynthesis of phosphatidic acid from dihydroxyacetone phosphate. Biochem. Biophys. Res. Commun. 33:929–935.PubMedGoogle Scholar
  37. Hajra, A. K. 1968b. Biosynthesis of acyl dihydroxyacetone phosphate in guinea pig liver mitochondria. J. Biol. Chem. 243:3458–3465.PubMedGoogle Scholar
  38. Hajra, A. K. 1969. Biosynthesis of alkyl-ether containing lipid from dihydroxyacetone phosphate. Biochem. Biophys. Res. Commun. 37:486–492.PubMedGoogle Scholar
  39. Hajra, A. K., and Agranoff, B. W. 1968a. Acyl dihydroxyacetone phosphate. Characterization of a 32P-labeled lipid from guinea pig liver mitochondria. J. Biol. Chem. 243:1617–1622.PubMedGoogle Scholar
  40. Hajra, A. K., and Agranoff, B. W. 1968b. Reduction of palmitoyl dihydroxyacetone phosphate by mitochondria. J. Biol. Chem. 243:3542–3543.PubMedGoogle Scholar
  41. Hill, E. E., and Lands, W. E. M. 1970. Phospholipid metabolism, pp. 185–277. In S. J. Wakil (ed.). Lipid Metabolism. Academic Press, New York.Google Scholar
  42. Hostetler, K. Y., Van den Bosch, H., and Van Deenen, L. L. M. 1972. The mechanism of cardiolipin biosynthesis in liver mitochondria. Biochim. Biophys. Acta 260:507–513.PubMedGoogle Scholar
  43. Hübscher, G. 1962. Metabolism of phospholipids. VI. The effect of metal ions on the incorporation of l-serine into phosphatidyl-serine. Biochim. Biophys. Acta 57:555–561.PubMedGoogle Scholar
  44. Hübscher, G. 1970. Glyceride metabolism, pp. 279–370. In S. J. Wakil (ed.). Lipid Metabolism. Academic Press, New York.Google Scholar
  45. Kai, M., Salway, J. G., and Hawthorne, J. N. 1968. The diphosphoinositide kinase of rat brain. Biochem. J. 106:791–801.PubMedGoogle Scholar
  46. Kanfer, J. N. 1972. Base exchange reactions of the phospholipids in rat brain particles. J. Lipid Res. 13:468–476.PubMedGoogle Scholar
  47. Kanfer, J., and Kennedy, E. P. 1964. Metabolism and function of bacterial lipids. II. Biosynthesis of phospholipids in Escherichia coli. J. Biol. Chem. 239:1720–1724.PubMedGoogle Scholar
  48. Kates, M., 1955. Hydrolysis of lecithin by plant plastid enzymes. Can. J. Biochem. 35:575–589.Google Scholar
  49. Kennedy, E. P. 1961. Biosynthesis of complex lipids. Fed. Proc. 20:934–940.PubMedGoogle Scholar
  50. Kennedy, E. P., and Lehninger, A. L. 1949. Oxidation of fatty acids and tricarboxylic acid cycle intermediates by isolated rat liver mitochondria. J. Biol. Chem. 179:957–972.PubMedGoogle Scholar
  51. Kiyasu, J. Y., and Kennedy, E. P. 1960. The enzymatic synthesis of plasmalogens. J. Biol. Chem. 235:2590–2594.PubMedGoogle Scholar
  52. Kiyasu, J. Y., Pieringer, R. A., Paulus, H., and Kennedy, E. P. 1963. The biosynthesis of phosphatidylglycerol. J. Biol. Chem. 238:2293–2298.PubMedGoogle Scholar
  53. Kornberg, A., and Pricer, W. E. 1953a. Enzymatic synthesis of the coenzyme A derivatives of long chain fatty acids. J. Biol. Chem. 204:329–343.PubMedGoogle Scholar
  54. Kornberg, A., and Pricer, W. E. 1953b. Enzymatic esterification of α-glycerophosphate by long chain fatty acids. J. Biol. Chem. 204:345–357.PubMedGoogle Scholar
  55. La Belle, E. F., and Hajra, A. K. 1972. Biosynthesis of acyl dihydroxyacetone phosphate in subcellular fractions of rat liver. J. Biol. Chem. 247:5835–5841.Google Scholar
  56. Lands, W. E. M. 1960. Metabolism of glycerolipids. II. The enzymatic acylation of lysoleci-thin. J. Biol. Chem. 235:2233–2237.PubMedGoogle Scholar
  57. Lands, W. E. M., and Merkl, I. 1963. Metabolism of glycerolipids. III. Reactivity of various acyl esters of coenzyme A with α’-acylglycerophosphorylcholine and positional specificities in lecithin synthesis. J. Biol. Chem. 238:898–904.PubMedGoogle Scholar
  58. Lippel, K., and Beattie, D. S. 1970. The submitochondrial distribution of acid:CoA ligase (AMP) and acid:CoA ligase (GDP) in rat liver mitochondria. Biochim. Biophys. Acta 218:227–232.Google Scholar
  59. Lynen, F. 1961. Biosynthesis of saturated fatty acids. Federation Proc. 20:941–951.Google Scholar
  60. Lynen, F., and Ochoa, S. 1953. Enzymes of fatty acid metabolism. Biochim. Biophys. Acta 12:299–314.PubMedGoogle Scholar
  61. Manning, R., and Brindley, D. N. 1972. Tritium isotope effects in the measurement of the glycerol phosphate and the dihydroxyacetonephosphate pathways of glycerolipid biosynthesis in rat liver. Biochem. J. 130:1003–1012.PubMedGoogle Scholar
  62. Marggraf, W. D., and Anderer, F. A. 1974. Alternative pathways in the biosynthesis of sphingomyelin and the role of phosphatidylcholine, CDPcholine and phosphorylcholine as precursors. Hoppe-Seyler’s Z. Physiol. Chem. 355:803–810.PubMedGoogle Scholar
  63. Marinetti, G. V., Erbland, J., Witter, J. F., Petix, J., and Stotz, E. 1958. Metabolic pathways of lysolecithin in a soluble rat-liver system. Biochem. Biophys. Acta 30:223.PubMedGoogle Scholar
  64. Norum, K. R. 1964. Palmityl-CoA:carnitine palmityltransferase. Purification from calf-liver mitochondria and some properties of the enzyme. Biochim. Biophys. Acta 89:95–108.PubMedGoogle Scholar
  65. Nugteren, D. H. 1965. The enzymic chain elongation of fatty acids by rat-liver microsomes. Biochim. Biophys. Acta 106:280–290.PubMedGoogle Scholar
  66. Numa, S., and Yamashita, S. 1974. Regulation of lipogenesis in animal tissues. Curr. Top. Cell.Regul. 8:197–246.PubMedGoogle Scholar
  67. Ong, D. E., and Brady, R. N. 1973. In vivo studies on the introduction of the 4-t-double bond of the sphingenine moiety of rat brain ceramides. J. Biol. Chem. 248:3884–3888.PubMedGoogle Scholar
  68. Overath, P., Kellerman, G. M., Lynen, F., Fritz, H. P., and Keller, H. J. 1962. Zum Mechanismus der Umlagerung von Methylmalonyl-CoA in Succinyl-CoA. IL Versuche zur Wirkungsweise von Methylmalonyl-CoA-Isomerase und Methylmalonyl-CoA-Race-mase. Biochem. Z. 335:500–518.PubMedGoogle Scholar
  69. Paltauf, F., and Holasek, A. 1973. Enzymatic synthesis of plasmalogens. Characterization of the 1-O-alkyl-2-acyl-sn-glycero-3-phosphorylethanolamine desaturase from mucosa of hamster small intestine. J. Biol. Chem. 248:1609–1615.PubMedGoogle Scholar
  70. Paulus, H., and Kennedy, E. P. 1960. The enzymatic synthesis of inositol monophosphatide. J. Biol. Chem. 235:1303–1311.PubMedGoogle Scholar
  71. Pfleger, R. C., Piantadosi, C., and Snyder, F. 1967. The biocleavage of isomeric glyceryl ethers by soluble liver enzymes in a variety of species. Biochim. Biophys. Acta 144:633–648.PubMedGoogle Scholar
  72. Polito, A. J., and Sweeley, C. C. 1971. Stereochemistry of the hydroxylation in 4-hydroy-sphinganine formation and the steric course of hydrogen elimination in sphing-4-enine biosynthesis. J. Biol. Chem. 246:4178–4187.PubMedGoogle Scholar
  73. Porcellati, G., Arienti, G., Pirotta, M., and Giorgini, D. 1971. Base-exchange reactions for the synthesis of phospholipids in nervous tissues. The incorporation of serine and ethanol-amine into the phospholipids of isolated brain microsomes. J. Neurochem. 18:1395–1402.PubMedGoogle Scholar
  74. Rahman, Y. E., Cerny, E. A., and Peraino, C. 1973. Purification and some properties of rat spleen phospholipase A. Biochim. Biophys. Acta 321:526–535.PubMedGoogle Scholar
  75. Rossi, C. R., and Carignani, G. 1971. Properties and location of the GTP-dependent acyl-coenzyme A synthetase, pp. 147–159. In G. Porcellati and F. Di Jeso (eds.). Membrane-Bound Enzymes. Plenum Press, New York.Google Scholar
  76. Rossi, C. R., and Gibson, D. M. 1964. Activation of fatty acids by a guanosine triphosphate-specific thiokinase from liver mitochondria. J. Biol. Chem. 239:1694–1699.PubMedGoogle Scholar
  77. Seubert, W., Greull, G., and Lynen, F. 1957. Die Synthese der Fettsäuren mit gereinigten Enzymen der Fettsäurecyclus. Angew. Chem. 69:359–361.Google Scholar
  78. Siperstein, M. D. 1970. Regulation of cholesterol biosynthesis in normal and malignant tissues. Curr. Top. Cell. Regul. 2:65–100.Google Scholar
  79. Snyder, F. 1972a. The enzymic pathways of ether linked lipids and their precursors, pp. 121 – 156. In F. Snyder (ed.). Ether lipids: Chemistry and Biology. Academic Press, New York and London.Google Scholar
  80. Snyder, F. 1972b. Enzymatic systems that synthesize and degrade glycerolipids possessing ether bonds. Adv. Lipid Res. 10:233–259.PubMedGoogle Scholar
  81. Snyder, F., Rainey, W. T., Blank, M. L., and Christie, W. H. 1970. The source of oxygen in the ether bond of glycerolipids. 18O studies. J. Biol. Chem. 245:5853–5856.PubMedGoogle Scholar
  82. Snyder, F., Malone, B., and Piantadosi, C. 1973. Tetrahydropteridine-dependent cleavage enzyme for O-alkyl lipids: substrate specificity. Biochim. Biophys. Acta 316:259–265.PubMedGoogle Scholar
  83. Srere, P. A. 1959. The citrate cleavage enzyme. I. Distribution and purification. J. Biol. Chem. 234:2544–2547.PubMedGoogle Scholar
  84. Sribney, M., and Kennedy, E. P. 1958. The enzymatic synthesis of sphingomyelin. J. Biol. Chem. 233:1315–1322.PubMedGoogle Scholar
  85. Stanacev, N. Z., Davidson, J. B., Stuhne-Sekalec, L., and Domazet, Z. 1972. The mechanism of the biosynthesis of cardiolipin in mitochondria. Biochem. Biophys. Res. Commun. 47:1021–1027.PubMedGoogle Scholar
  86. Stein, O., and Stein, Y. 1969. Lecithin synthesis, intracellular transport and secretion in rat liver. IV. A radioauthographic and biochemical study of choline-deficient rats injected with choline-3H. J. Cell Biol. 40:461–483.PubMedGoogle Scholar
  87. Stein, Y., and Stein, O. 1966. Metabolism of labelled lysolecithin, lysophosphatidylethanol-amine and lecithin in the rat. Biochim. Biophys. Acta 116:95–107.PubMedGoogle Scholar
  88. Stern, J. R. 1971. A role of acetoacetyl-CoA synthetase in acetoacetate utilization by rat liver cell fractions. Biochem. Biophys. Res. Commun. 44:1001–1007.PubMedGoogle Scholar
  89. Stern, J. R., and Ochoa, S. 1951. Enzymatic synthesis of citric acid. I. Synthesis with soluble enzymes. J. Biol. Chem. 191:161–172.PubMedGoogle Scholar
  90. Stern, J. R., Coon, M. J., and Del Campillo, A. 1953. Enzymatic breakdown and synthesis of acetoacetate. Nature 171:28–30.PubMedGoogle Scholar
  91. Stern, J. R., Coon, M. J., Del Campillo, A., and Schneider, M. C. 1956. Enzymes of fatty acid metabolism. IV. Preparation and properties of coenzyme A transferase. J. Biol. Chem. 221:15–31.PubMedGoogle Scholar
  92. Stoffel, W. 1971. Sphingolipids. Ann. Rev. Biochem. 40:57–82.PubMedGoogle Scholar
  93. Stoffel, W., and Bister, K. 1974. Studies on the desaturation of sphinganine. Ceramide and sphingomyelin metabolism in the rat and in BHK 21 cells in tissue culture. Hoppe-Seyler’s Z. Physiol. Chem. 355:911–923.PubMedGoogle Scholar
  94. Stoffel, W., and Caesar, H. 1965. Der Stoffwechsel der ungesättigten Fettsäuren. Zur β-Oxidation der Mono- und Polyenfettsäuren. Der Mechanismus der enzymatischen Reaktionen an Δ2cis-Enoyl-CoA-Verbindungen. Z. Physiol. Chem. 341:76–83.Google Scholar
  95. Stoffel, W., Ditzer, R., and Caesar, H. 1964. Der Stoffwechsel der ungesättigten Fettsäuren. III. Zur β -Oxidation der Mono- und Polyenfettsäuren. Der Mechanismus der enzymatischen Reaktionen an Δ3cis-Enoyl-CoA-Verbindungen. Z. Physiol. Chem. 339:167–181.Google Scholar
  96. Sundler, R. 1973. Biosynthesis of rat liver phosphatidylethanolamines from intraportally injected ethanolamine. Biochim. Biophys. Acta 306:218–226.PubMedGoogle Scholar
  97. Tamai, Y., and Lands, W. E. M. 1974. Positional specificity of sn-glycerol-3-phosphate acylation during phosphatidate formation by rat liver microsomes. J. Biochem. 76:847–860.PubMedGoogle Scholar
  98. Ter Schegget, J., Van den Bosch, H., Van Baak, M. A., Hostetler, K. Y., and Borst, P. 1971. The synthesis and utilization of dCDP-diglyceride by a mitochondrial fraction from rat liver Biochim. Biophys. Acta 239:234–242.PubMedGoogle Scholar
  99. Tietz, A., Lindberg, M., and Kennedy, E. P. 1964. A new pteridine-requiring enzyme system for the oxidation of glyceryl ethers. J. Biol. Chem. 239:4081–4090PubMedGoogle Scholar
  100. Ullman, M. D., and Radin, N. S. 1974. The enzymatic formation of sphingomyelin from ceramide and lecithin in mouse fiver. J. Biol. Chem. 249:1506–1512.PubMedGoogle Scholar
  101. Vagelos, P. R., Majerus, P. W., Alberts, A. W., Larrabee, A. R., and Ailhaud, G. P. 1966. Structure and function of acyl carrier protein. Fed. Proc. 25:1485–1494.PubMedGoogle Scholar
  102. Van Deenen, L. L. M. 1965. Phospholipids and biomembranes. Progr. Chem. Fats Other Lipids 8:1–127.Google Scholar
  103. Van den Bosch, H. 1974. Phosphoglyceride metabolism. Ann. Rev. Biochem. 43:243–277.PubMedGoogle Scholar
  104. Van den Bosch, H., Bonte, H. A., and Van Deenen, L. L. M. 1965. On the anabolism of lysolecithin. Biochim. Biophys. Acta 98:648–661.PubMedGoogle Scholar
  105. Van den Bosch, H., Van Golde, L. M. G., and Van Deenen, L. L. M. 1972. Dynamics of phosphoglycerides. Rev. Physiol. 66:13–145.Google Scholar
  106. Van den Bosch, H., Aarsman, A. J., De Jong, J. G. N., and Van Deenen, L. L. M. 1973. Studies on lysophospholipases. I. Purification and some properties of a lysophospholi-pase from beef pancreas. Biochim. Biophys. Acta 296:94–104.PubMedGoogle Scholar
  107. Van den Bosch, H., Aarsman, A. J., and Van Deenen, L. L. M. 1974. Isolation and properties of a phospholipase Al activity from beef pancreas. Biochim. Biophys. Acta 348:197–209.PubMedGoogle Scholar
  108. Wakil, S. J. 1958. A malonic acid derivative as an intermediate in fatty acid synthesis. J. Am. Chem. Soc. 80:6465.Google Scholar
  109. Wakil, S. J. 1961. Mechanism of fatty acid synthesis. J. Lipid Res. 2:1–24.Google Scholar
  110. Waku, K., and Nakazawa, Y. 1970. Acyltransferase activity to 1-O-alkyl-glycero-3-phospho-rylcholine in sarcoplasmic reticulum. J. Biochem. 68:459–466.PubMedGoogle Scholar
  111. Waku, K., and Nakazawa, Y. 1972. Acyltransferase activity to 1-acyl-, 1-O-alkenyl-, and 1-O-alkyl-glycero-3-phosphorylcholine in Ehrlich Ascites tumor cells. J. Biochem. 72:495–499.PubMedGoogle Scholar
  112. Warner, H. R., and Lands, W. E. M. 1961. The metabolism of plasmalogen: enzymatic hydrolysis of the vinyl ether. J. Biol. Chem. 236:2404–2409.PubMedGoogle Scholar
  113. Wills, E. D. 1965. Lipases. Adv. Lipid Res. 3:197–240.PubMedGoogle Scholar
  114. Wit-Peeters, E. M. 1969. Synthesis of long-chain fatty acids in mitochondria. Biochim. Biophys. Acta 176:453–462.PubMedGoogle Scholar
  115. Wykle, R. L., and Snyder, F. 1969. The glycerol source for the biosynthesis of alkyl glyceryl ethers. Biochem. Biophys. Res. Commun. 37:658–662.PubMedGoogle Scholar
  116. Wykle, R. L., and Snyder, F. 1970. Biosynthesis of an O-alkyl analogue of phosphatidic acid and O-alkylglycerols via O-alkyl ketone intermediates by microsomal enzymes. J. Biol. Chem. 245:3047–3058.PubMedGoogle Scholar
  117. Wykle, R. L., Blank, M. L., Malone, B., and Snyder, F. 1972a. Evidence for a mixed-function oxidase in the biosynthesis of ethanolamine plasmalogens from 1-alkyl-2-acyl-sn-glycero-3-phosphorylethanolamine. J. Biol. Chem. 247:5442–5447.PubMedGoogle Scholar
  118. Wykle, R. L., Kantadosi, C., and Snyder, F. 1972b. The role of acyldihydroxyacetone phosphate, NADH, and NADPH in the biosynthesis of O-alkyl glycerolipids by microsomal enzymes of Ehrlich ascites tumor. J. Biol. Chem. 247:2944–2948.PubMedGoogle Scholar
  119. Yates, D. W., and Garland, P. B. 1966. The partial latency and intramitochondrial distribution of carnitine palmitoyltransferase and the CoASH and carnitine permeable space of rat liver mitochondria. Biochem. Biophys. Res. Commun. 23:460–465.PubMedGoogle Scholar
  120. Yavin, E., and Gatt, S. 1972. Oxygen-dependent cleavage of the vinyl-ether linkage of plasmalogens. I. Cleavage by rat-brain supernatant. Eur. J. Biochem. 25:431–436.PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1977

Authors and Affiliations

  • L. M. G. Van Golde
    • 1
  • S. G. Van den Bergh
    • 1
  1. 1.Laboratory of Veterinary BiochemistryState University of UtrechtUtrechtThe Netherlands

Personalised recommendations