Advertisement

Sterols

  • John D. Weete
Part of the Monographs in Lipid Research book series (MLR)

Abstract

The isoprenoids, a large and important group of compounds produced primarily by plants, are formed by the condensation of a single repeating five carbon unit called isoprene:
$$C{{H}_{2}}=\overset{\begin{matrix} C{{H}_{3}} \\ | \\\end{matrix}}{\mathop{C}}\,-CH=C{{H}_{2}}$$
Isoprene polymerization leads to the production of monoterpenoids (C10), sesquiterpenoids (C15), diterpenoids (C20) and C20 to C40 compounds such as the triterpenoids, carotenoids, xanthophylls, penta- and hexacyclic steroid alkaloids as well as rubber. A general outline of isoprenoid metabolism is given in Fig. 5.1. The triterpenoids are biologically the most interesting and important of these compounds, particularly the sterols, which are widely distributed throughout the plant and animal kingdoms. In spite of their wide distribution, several taxonomic groups do not produce sterols and thus, require them for growth and/or reproduction. Apparently all insects and members of the fungal family Pythiaceae are not capable of synthesizing sterols. Other species such as the purple photosynthetic bacterium Rhodopseudomonas palustris, the tapeworm Spirometra mansonoides, the annelid Lumbricus terrestris, the nematode Turbatrix acete, and others are also incapable of synthesizing the sterol moiety.(1) Until recently, prokaryotic organisms were thought to lack the capacity for sterol synthesis, but these compounds have now been identified in lipid extracts of certain blue-green algae(2, 3) and bacteria.(4) The extent of sterol distributions in these groups awaits further investigations.

Keywords

Plant Sterol Rust Fungus Ergosterol Peroxide Sterol Component Trisporic Acid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. B. Clayton, in Aspects of Terpenoid Chemistry and Biochemistry, (ed. T. W. Goodwin ), Academic Press, New York (1971).Google Scholar
  2. 2.
    N. J. Souza and W. R. Nes, Science 162: 363 (1968).PubMedCrossRefGoogle Scholar
  3. 3.
    R. C. Reitz and J. G. Hamilton, Comp. Biochem. Physiol. 25: 401 (1968).PubMedCrossRefGoogle Scholar
  4. 4.
    K. Schubert, G. Rose, H. Wachtel, C. Hörhold, and N. Ikekawa, Europ. J. Biochem. 5: 246 (1968).PubMedCrossRefGoogle Scholar
  5. 5.
    J. W. Foster, Chemical Activities of Fungi. Academic Press, New York, p. 125 (1949).Google Scholar
  6. 6.
    V. W. Cochrane, Physiology of Fungi, John Wiley, New York, p. 45 (1958).Google Scholar
  7. 7.
    C. Tanret, C.R. Acad. Sci. (Paris) 108: 98 (1889).Google Scholar
  8. 8.
    E. Gerard, Compt. Rend. 114: 1541 (1892).Google Scholar
  9. 9.
    E. Gerard, Compt. Rend. 121: 723 (1895).Google Scholar
  10. 10.
    E. Gerard, Compt. Rend. 126: 909 (1898).Google Scholar
  11. 11.
    E. Gerard, J. Pharm. Chem. 1: 601 (1895).Google Scholar
  12. 12.
    W. B. Turner, in Fungal Metabolites, Academic Press, New York (1971).Google Scholar
  13. 13.
    W. Bergmann, Ann. Rev. Plant Physiol. 4: 383 (1954).CrossRefGoogle Scholar
  14. 14.
    W. Bergmann, in Comparative Biochemistry, Vol. 3A ( M. Florkin and H. S. Mason, eds.), Academic Press, New York (1962).Google Scholar
  15. 15.
    H. Stoll and E. Jucker, in Modern Methods of Plant Analysis, Vol. 3 ( K. Paech and M. V. Tracey, eds.), Springer-Verlag, Berlin (1955).Google Scholar
  16. 16.
    A. Heusner, in Handbuch der Pflanzenphysiologie, Vol. 10, ( W. Ruhland, ed.), Springer-Verlag, Berlin (1958).Google Scholar
  17. 17.
    L. F. Fieser and M. Fieser, Steroids, Reinhold, New York (1959).Google Scholar
  18. 18.
    E. Heftmann, Ann. Rev. Plant Physiol. 14: 225 (1963).CrossRefGoogle Scholar
  19. 19.
    C. W. Shoppee, in Chemistry of the Steroids, Butterworths, London (1964).Google Scholar
  20. 20.
    L. J. Goad, in Terpenoids in Plants, ( J. B. Pridham, ed.), Academic Press, New York (1967).Google Scholar
  21. 21.
    I. S. MacLean and D. Hoffert, Biochem. J. 17: 720 (1928).Google Scholar
  22. 22.
    L. M. Preuss, W. H. Peterson, H. Steenbock, and E. B. Fred, J. Biol. Chem. 90: 369 (1931).Google Scholar
  23. 23.
    L. M. Preuss, H. J. Gorcia, H. C. Green, and W. H. Peterson, Biochem. Z. 246: 401 (1932).Google Scholar
  24. 24.
    L. M. Preuss, E. C. Eichinger, and W. H. Peterson, Ztschr. Bakt. II. 89: 370 (1934).Google Scholar
  25. 25.
    K. Bernhauer and G. Patzelt, Biochem. Z. 280: 388 (1935).Google Scholar
  26. 26.
    P. R. Wenck, W. H. Peterson, and H. C. Green, Zentr. Bakteriol. Parasitenk. Aht. II. 92: 324 (1935).Google Scholar
  27. 27.
    P. R. Wenck, W. H. Peterson, and E. B. Fred, Zentr. Bakteriol. II., 92: 330 (1935).Google Scholar
  28. 28.
    M. Vanghelovici and F. Serban, Acad. Romana Mem. Sect. Stunt. 22: 287 (1940).Google Scholar
  29. 29.
    M. Vanghelovici and F. Serban, Acad. Romana Mem. Sect. Saint. 23: 436 (1941).Google Scholar
  30. 30.
    C. J. Cavallito, Science, 100: 333 (1944).PubMedCrossRefGoogle Scholar
  31. 31.
    W. J. Ellis, Australian Council Sci. Ind. Res. 18: 314 (1945).Google Scholar
  32. 32.
    A. Angeletti and G. Tappi, Gazz. Chim. Ital. 77: 112 (1947).Google Scholar
  33. 33.
    L. M. Dulaney, E. O. Stapley, and K. Simpf, Appl. Microbiol. 2: 371 (1954).PubMedGoogle Scholar
  34. 34.
    C. E. Bills, O. N. Massengale, and P. S. Puckett, J. Biol. Chem. 87: 259 (1930).Google Scholar
  35. 35.
    G. S. Appleton, R. J. Kieber, and W. J. Payne, Appl. Microbiol. 3: 249 (1955).PubMedGoogle Scholar
  36. 36.
    F. Blank, F. E. Shorland, and G. Just, J. Invest. Dermatol. 39: 91 (1962).PubMedGoogle Scholar
  37. 37.
    A. Heiduschka and H. Lindner, Z. Physiol. Chem. 181: 15 (1929).CrossRefGoogle Scholar
  38. 38.
    N. J. McCorkindale, S. A. Hutchinson, B. A. Pursey, W. T. Scott, and R. Wheeler, Phytochemistry, 8: 861 (1969).CrossRefGoogle Scholar
  39. 39.
    J. D. Weete, Phytochemistry 12: 1843 (1973).CrossRefGoogle Scholar
  40. 40.
    G. A. Bean, G. W. Patterson, and J. J. Motta, Comp. Biochem. Physiol. 43B: 935 (1973).Google Scholar
  41. 41.
    G. Goulston, L. J. Goad, and T. W. Goodwin, Biochem. J. 102: 15C (1967).PubMedGoogle Scholar
  42. 42.
    J. D. Weete, J. L. Laseter, and G. C. Lawler, Arch. Biochem. Biophys. 155: 411 (1973).PubMedCrossRefGoogle Scholar
  43. 43.
    J. D. Weete and J. L. Laseter, Lipids (in press).Google Scholar
  44. 44.
    B. A. Knights, Phytochemistry 9: 70 (1970).Google Scholar
  45. 45.
    E. Merdinger, P. Kohn, and R. C. McClain, Can. J. Microbiol. 15: 1021 (1968).CrossRefGoogle Scholar
  46. 46.
    H. Wieland and W. Benend, Ann. Chem. 554: 1 (1943).Google Scholar
  47. 47.
    D. H. R. Barton and J. D. Cox, J. Chem. Soc. 13: 54 (1948).Google Scholar
  48. 48.
    C. Tanret, Compt. Rend. 147: 75 (1908).Google Scholar
  49. 49.
    Y. S. Chen and R. H. Haskins, Can. J. Chem. 41: 1647 (1963).CrossRefGoogle Scholar
  50. 50.
    M. J. Vacheron and G. Michel, Phytochemistry 7: 1645 (1968).CrossRefGoogle Scholar
  51. 51.
    G. W. Rambo and G. A. Bean, Phytochemistry 12 (in press).Google Scholar
  52. 52.
    K. Petzoldt, M. Kuhne, E. Blanke, K. Kieslich, and E. Kaspar, Ann. Chem. 709: 203 (1967).Google Scholar
  53. 53.
    G. Goulston and E. I. Mercer, Phytochemistry 8: 1945 (1969).CrossRefGoogle Scholar
  54. 54.
    G. Goulston, L. J. Goad, and T. W. Goodwin, Biochem. J. 102: 15C (1967).PubMedGoogle Scholar
  55. 55.
    D. H. R. Barton and T. Bruun, J. Chem. Soc. 27: 28 (1951).Google Scholar
  56. 56.
    O. N. Breivak, J. L. Owades, and R. F. Light, J. Org. Chem. 19: 1734 (1954).CrossRefGoogle Scholar
  57. 57.
    Y. Tanahashi and T. Takahashi, Bull. Chem. Soc. (Japan) 39: 848 (1966).CrossRefGoogle Scholar
  58. 58.
    S. M. Clarke and M. McKenzie, Nature 213: 504 (1967).PubMedCrossRefGoogle Scholar
  59. 59.
    J. G. Hamilton and R. N. Castrejon, Federation Am. Soc. Exp. Biol. 25: 221 (1966).Google Scholar
  60. 60.
    H. Weiland and M. Asano, Ann. 473: 300 (1929).Google Scholar
  61. 61.
    H. Weiland, F. Rath, and H. Hesse, Ann. 548: 34 (1941).Google Scholar
  62. 62.
    R. Bentley, W. V. Lavate, and C. C. Sweeley, Comp. Biochem. Physiol. 11: 263 (1964).PubMedCrossRefGoogle Scholar
  63. 63.
    F. H. Milazzo, Can. J. Botany 43: 1347 (1965).CrossRefGoogle Scholar
  64. 64.
    R. B. Holtz and L. C. Schisler, Lipids 7: 251 (1972).CrossRefGoogle Scholar
  65. 65.
    G. R. Pettit and J. C. Knight, J. Org. Chem. 27: 2696 (1962).CrossRefGoogle Scholar
  66. 66.
    L. I. Strigina, Y. N. Elkin, G. B. Elyakov, Phytochemistry 10: 2361 (1971).CrossRefGoogle Scholar
  67. 67.
    F. W. Hougen, B. M. Craig, and G. A. Ledingham, Can. J. Microbial. 4: 521 (1958).CrossRefGoogle Scholar
  68. 68.
    R. Nowak, W. K. Kim, and R. Rohringer, Can. J. Bot. 50: 185 (1972).CrossRefGoogle Scholar
  69. 69.
    L. L. Jackson and D. S. Frear, Phytochemistry 7: 654 (1968).CrossRefGoogle Scholar
  70. 70.
    A. Saito, J. Fermentation Technol. (Japan) 31: 328 (1953).Google Scholar
  71. 71.
    G. W. Patterson, Lipids 6: 120 (1971).CrossRefGoogle Scholar
  72. 72.
    R. C. Reitz and J. G. Hamilton, Comp. Biochem. Physiol. 25: 401 (1968).PubMedCrossRefGoogle Scholar
  73. 73.
    N. J. deSouza and W. R. Nes, Science 162: 363 (1968).CrossRefGoogle Scholar
  74. 74.
    K. Schubert, G. Rose, H. Wachtel, C. Hörhold, and N. Ikekhawa, European J. Biochem. 5: 246 (1968).CrossRefGoogle Scholar
  75. 75.
    E. Heftmann, Lipids 6: 128 (1970).CrossRefGoogle Scholar
  76. 76.
    E. Heftmann, Steroid Biochemistry, Academic Press, New York (1970).Google Scholar
  77. 77.
    J. W. Hendrix, Ann. Rer. Phvtopathol. 8: 111 (1970).CrossRefGoogle Scholar
  78. 78.
    J. W. Produlock, L. W. Wheeldon, D. J. Jollow, and A. W. Lunnane, Biochim. Biophys. Acta 152: 434 (1968).Google Scholar
  79. 79.
    R. H. Haskins, Can. J. Microbial. 9: 451 (1963).CrossRefGoogle Scholar
  80. 80.
    J. W. Hendrix, Dissertation Abstr. 24: 1783 (1963).Google Scholar
  81. 81.
    J. W. Hendrix and J. L. Apple, Phytopathology 54: 987 (1964).Google Scholar
  82. 82.
    C. G. Elliott, M. R. Hendrie, B. A. Knights, and W. Parker, Nature 203: 427 (1964).CrossRefGoogle Scholar
  83. 83.
    R. H. Haskins, A. P. Tulloch, R. G. Micetich, Can. J. Microbial. 10: 187 (1964).CrossRefGoogle Scholar
  84. 84.
    J. W. Hendrix, Science 144: 1028 (1964).PubMedCrossRefGoogle Scholar
  85. 85.
    J. A. Leal, J. Friend, P. Holliday, Nature 203: 545 (1964).CrossRefGoogle Scholar
  86. 86.
    S. Mokady and Y. Koltin, Phytochemistry 10: 2035 (1971).CrossRefGoogle Scholar
  87. 87.
    Rae Woods, H. E. Bloss, and G. A. Gries, Phytopathology 57: 228 (1967).Google Scholar
  88. 88.
    J. F. Baniecki and H. E. Bloss, Phytopathology 59: 680 (1969).Google Scholar
  89. 89.
    J. F. Baniecki and H. E. Bloss, Mvcologia LXI: 1054 (1969).Google Scholar
  90. 90.
    V. G. Lilly, in The Fungus Spore, (ed. M. F. Madelin ), Butterworths, London (1966).Google Scholar
  91. 91.
    A. W. Barksdale, Science 166: 831 (1969).PubMedCrossRefGoogle Scholar
  92. 92.
    D. E. Hunt and P. L. Carpenter, J. Bacterial. 86: 845 (1963).Google Scholar
  93. 93.
    R. R. Nelson, D. Huisingh, and R. K. Webster, Phytopathology 57: 1081 (1967).Google Scholar
  94. 94.
    J. W. Hendrix, Science 161: 1252 (1968).PubMedCrossRefGoogle Scholar
  95. 95.
    S. C. Knisky, G. R. Gronau, and M. M. Weber, Mol. Parmacol. 1: 190 (1965).Google Scholar
  96. 96.
    G. Rouser, G. J. Nelson, S. Fleischer, and G. Simon, in Biological Membranes (ed. D. Chapman ), Academic Press, New York (1968).Google Scholar
  97. 97.
    L. W. Parks and P. R. Starr, J. Cell Comp. Physiol. 61: 61 (1963).PubMedCrossRefGoogle Scholar
  98. 98.
    E. Schlösser and D. Gottlieb, Arch. Mikrobiol. 61: 246 (1968).PubMedCrossRefGoogle Scholar
  99. 99.
    S. Tsuda and E. L. Tatum, J. Biophys. Biochem. Cyto. 11: 171 (1961).CrossRefGoogle Scholar
  100. 100.
    B. G. Adams and L. W. Parks, Biochem. Biophys. Res. Commun. 28: 490 (1968).CrossRefGoogle Scholar
  101. 101.
    B.G. Adams and L. W. Parks, J. Lipid Res. 9: 8 (1968).PubMedGoogle Scholar
  102. 102.
    D. A. Monner and L. W. Parks, Anal. Biochem. 25: 61 (1968).PubMedCrossRefGoogle Scholar
  103. 103.
    R. D. Brandt, G. Ourisson, and R. J. Pryce, Biochem. Biophys. Res. Commun. 37: 399 (1969).PubMedCrossRefGoogle Scholar
  104. 104.
    R. D. Brandt, G. Ourisson, and R. J. Pryce, European J. Biochem. 17: 344 (1970).CrossRefGoogle Scholar
  105. 105.
    R. J. Pryce, Phytochemistry 10: 1303 (1971).CrossRefGoogle Scholar
  106. 106.
    C. Anding, R. D. Brandt, G. Ourisson, R. J. Pryce, and M. Rohmer, Proc. Royal Soc. (London) 180: 115 (1972).CrossRefGoogle Scholar
  107. 107.
    H. Wieland and W. M. Stanley, Ann. Chem. 489: 31 1 1931 ).Google Scholar
  108. 108.
    D. H. R. Barton, D. M. Harrison, and D. A. Widdowson, Chem. Commun. 17 (1968).Google Scholar
  109. 109.
    D. H. R. Barton and J. D. Cox, J. Chem. Soc. 214 (1949).Google Scholar
  110. 110.
    G. H. Alt and D. H. R. Barton, Chem. Ind. (London) 45: 1103 (1952).Google Scholar
  111. 111.
    H. Wieland and W. Benend, Ann. Chem. 554: 1 (1943).Google Scholar
  112. 112.
    T. G. Halsall and G. C. Sayer, J. Chem. Soc. 20: 31 (1959).Google Scholar
  113. 113.
    L. W. Parks, F. T. Bond, E. D. Thompson, and P. R. Starr, J. Lipid Res. 13: 311 (1972).PubMedGoogle Scholar
  114. 114.
    E. Heftman, Lipids (in press).Google Scholar
  115. 115.
    E. D. Thompson, B. A. Knights, and L. W. Parks, Biochim. Biophys. Acta 304: 132 (1973).PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1974

Authors and Affiliations

  • John D. Weete
    • 1
  1. 1.Department of Botany and MicrobiologyAuburn UniversityAuburnUSA

Personalised recommendations