Advertisement

Aliphatic Hydrocarbons

  • John D. Weete
Part of the Monographs in Lipid Research book series (MLR)

Abstract

Aliphatic hydrocarbons have been detected in almost every plant, animal, and microorganism examined. The distributions and metabolism of higher plant and bacterial hydrocarbons have been the subject of several reviews during the past three to four years (1–5) Higher-plant surfaces are generally covered with a complex waxy coating consisting of long-chain fatty acids, primary and secondary fatty alcohols, waxy esters, ketones, aldehydes, acetals, diols, terpenes, glycerides, and others. Aliphatic hydrocarbons are also included in this array of lipids in the epicuticular surface of higher plants and were first identified by crude chemical methods as early as 1929.(6–8) The early investigations have been confirmed and expanded using more sophisticated instrumentation such as gas-liquid chromatography and GLC-mass spectrometry. A guide to the nomenclature of saturated straight-chain hydrocarbons from C15 to C36 is given in Table 2.1.

Keywords

Aliphatic Hydrocarbon Carbon Chain Length Glyceryl Ether Paraffinic Hydrocarbon Anabaena Variabilis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. Eglinton and R. J. Hamilton, Science 156: 1322 (1967).PubMedCrossRefGoogle Scholar
  2. 2.
    P. E. Kolattukudy, Lipids 5: 259 (1970).CrossRefGoogle Scholar
  3. 3.
    P. E. Kolattukudy, Science 159: 498 (1968).PubMedCrossRefGoogle Scholar
  4. 4.
    Kolattukudy, Ann. Rev. Plant Physiol. 21: 163 (1970).CrossRefGoogle Scholar
  5. 5.
    P. W. Albro and J. C. Dittmer, Lipids 5: 320 (1970).PubMedCrossRefGoogle Scholar
  6. 6.
    A. C. Chibnall, S. H. Piper, A. Pollard, R. E. Williams, and P. N. Sahsi, Biochem. J. 28: 2189 (1934).PubMedGoogle Scholar
  7. 7.
    E. Crenshaw and I. Smedley-Maclean, Biochem. J. 23: 107 (1929).Google Scholar
  8. 8.
    A. C. Chibnall and S. H. Piper, Biochem. J. 28: 2209 (1934).PubMedGoogle Scholar
  9. 9.
    W. G. Fehler and R. J. Light, Biochemistry 9: 418 (1970).PubMedCrossRefGoogle Scholar
  10. 10.
    H. Schnieder, Dissertation, University of Houston, Houston, Texas (1969).Google Scholar
  11. 11.
    K. Winters, P. L. Parker, and C. VanBaalen, Science 163: 467 (1969).PubMedCrossRefGoogle Scholar
  12. 12.
    J. Han, H. W. S. Chan, and M. Calvin, J. Am. Chem. Soc. 91: 5156 (1969).PubMedCrossRefGoogle Scholar
  13. 13.
    J. Han, E. D. McCarthy, M. Calvin, and M. A. Benn, J. Chem. Soc. C: 2785 (1968).Google Scholar
  14. 14.
    P. Gülz, Phytochemistry 7: 1009 (1968).CrossRefGoogle Scholar
  15. 15.
    Kaneda, T. Photochemistry 8: 2039 (1969).CrossRefGoogle Scholar
  16. 16.
    J. D. Weete, S. Venketeswaran, and J. L. Laseter, Phytochemistry 10: 939 (1971).CrossRefGoogle Scholar
  17. 17.
    G. A. Herbin and P. A. Robins, Phytochemistry 8: 1985 (1969).CrossRefGoogle Scholar
  18. 18.
    R. F. N. Hutchins and M. M. Martin, Lipids 3: 250 (1967).CrossRefGoogle Scholar
  19. 19.
    T. G. Tornabene and S. P. Markey, Lipids 6: 190 (1971).PubMedCrossRefGoogle Scholar
  20. 20.
    P. W. Albro, T. D. Meehan, and J. C. Dittmer, Biochemistry 9: 1893 (1970).PubMedCrossRefGoogle Scholar
  21. 21.
    T. C. Tornabene, E. Gelpi, and J. Oro, J. Bacteriol. 94: 333 (1967).PubMedGoogle Scholar
  22. 22.
    J. Weete, Phytochemistry 11: 1201 (1972).CrossRefGoogle Scholar
  23. 23.
    K. Baker and G. A. Strobel, Proc. Montana Acad. Sci. 25: 83 (1965).Google Scholar
  24. 24.
    J. Oro, J. L. Laseter, and D. J. Weber, Science 154: 399 (1966).PubMedCrossRefGoogle Scholar
  25. 25.
    J. D. Weete, J. L. Laseter, D. J. Weber, W. M. Hess, and D. L. Stocks, Phytopathology 59: 545 (1969).Google Scholar
  26. 26.
    J. L. Laseter, W. M. Hess, J. D. Weete, D. L. Stocks, and D. J. Weber, Can. J. Microbiol. 14: 1149 (1968).PubMedCrossRefGoogle Scholar
  27. 27.
    J. D. Weete, D. J. Weber, and J. L. Laseter, J. Bacteriol. 103: 536 (1970).PubMedGoogle Scholar
  28. 28.
    J. D. Weete, D. J. Weber, and D. J. LeTourneau, Arch. Microbiol. 75: 59 (1971).Google Scholar
  29. 29.
    J. L. Laseter and R. Valle, Environ. Sci. Technol. 5: 631 (1971).CrossRefGoogle Scholar
  30. 30.
    F. J. Schwinn, Phytopathology 2: 376–379 (1969).Google Scholar
  31. 31.
    J. L. Laseter and D. J. Weber, Phytopathology 58: 886 (1966).Google Scholar
  32. 32.
    E. J. Trione and T. M. Ching, Phytochemistry 10: 227 (1971).CrossRefGoogle Scholar
  33. 33.
    E. Clenshaw and I. Smedley-Maclean, Biochem. J. 23: 107 (1929).PubMedGoogle Scholar
  34. 34.
    J. G. Jones, J. Gen. Microbiol. 59: 145 (1969).PubMedGoogle Scholar
  35. 35.
    E. Merdinger and E. M. Devine, Jr., J. Bacteriol. 89: 1488 (1965).PubMedGoogle Scholar
  36. 36.
    E. Merdinger, P. Kohn, and R. C. McClain, Can. J. Microbiol. 14: 1021 (1968).PubMedCrossRefGoogle Scholar
  37. 37.
    M. Fabre-Joneau, J. Baraud, and C. Cassagne, C.R. Acad. Sci. Paris 1: 268 (1969).Google Scholar
  38. 38.
    H. J. Cannon and A. C. Chibnall, Biochem. J. 23: 168 (1929).Google Scholar
  39. 39.
    P. E. Kolattukudy, Science 159: 498 (1968).PubMedCrossRefGoogle Scholar
  40. 40.
    P. E. Kolattukudy, Biochemistry 5: 2265 (1966).PubMedCrossRefGoogle Scholar
  41. 41.
    T. Kaneda, Biochemistry 7: 1194 (1968).PubMedCrossRefGoogle Scholar
  42. 42.
    P. E. Kolattukudy, R. H. Jaeger, and R. Robinson, Nature 219: 1038 (1968).CrossRefGoogle Scholar
  43. 43.
    A. C. Chibnall and S. H. Piper, Biochem. J. 28: 2209 (1934).PubMedGoogle Scholar
  44. 44.
    P. E. Kolattukudy, Phytochemistry 6: 963 (1967).CrossRefGoogle Scholar
  45. 45.
    P. E. Kolattukudy, Plant Physiol. 43: 1466 (1968).PubMedCrossRefGoogle Scholar
  46. 46.
    T. Kaneda, Biochemistry 6: 2023 (1967).PubMedCrossRefGoogle Scholar
  47. 47.
    P. A. Albro and J. C. Dittmer, Biochemistry 8: 394 (1969).PubMedCrossRefGoogle Scholar
  48. 48.
    P. A. Albro and J. C. Dittmer, Biochemistry 8: 1913 (1969).PubMedCrossRefGoogle Scholar
  49. 49.
    J. B. Davis and D. M. Updegraff, Bacteriol. Rev. 18: 215 (1954).PubMedGoogle Scholar
  50. 50.
    J. B. Davis, Petroleum Microbiology, Elsevier Publishing Co., Amsterdam (1967).Google Scholar
  51. 51.
    J. W. Foster, In Oxygenases ( O. Hayaishi, ed.), Academic Press, New York (1962).Google Scholar
  52. 52.
    J. W. Foster, Antonie van Leewenhoek, J. Microbiol. Serol. 28: 241 (1962).Google Scholar
  53. 53.
    A. C. Van der Lindon and G. J. E. Thijsse, Adv. Enzymol. 27: 469 (1965).Google Scholar
  54. 54.
    E. J. McKenna and R. E. Kallio, Ann. Rev. Microbiol. 19: 183 (1965).CrossRefGoogle Scholar
  55. 55.
    P. Jurtshuk and G. E. Cardini, C.R.C. Critical Reviews in Microbiology (in press) (1972).Google Scholar
  56. 56.
    A. S. Kester and J. W. Foster, J. Bacteriol. 85: 859 (1963).PubMedGoogle Scholar
  57. 57.
    K. C. Robbins, Arch. Biochem. 123: 531 (1968).PubMedCrossRefGoogle Scholar
  58. 58.
    M. I. Gurr and A. T. James, Lipid Biochemistry, Cornell Press, Ithaca, N.Y. (1971).Google Scholar
  59. 59.
    R. K. Gholson, N. J. Baptist, and M. J. Coon, Biochemistry 2: 1155 (1963).PubMedCrossRefGoogle Scholar
  60. 60.
    J. N. Baptist, R. K. Gholson, and M. J. Coon, Biochem. Biophys. Acta 69: 40 (1963).PubMedCrossRefGoogle Scholar
  61. 61.
    E. J. McKenna and M. J. Coon, J. Biol. Chem. 245: 3882 (1970).PubMedGoogle Scholar
  62. 62.
    J. A. Peterson, E. J. McKenna, R. W. Estabrook, and M. J. Coon, Arch. Biochem. Biophys. 131: 245 (1969).PubMedCrossRefGoogle Scholar
  63. 63.
    J. A. Peterson, D. Basu, and M. J. Coon, J. Biol. Chem. 241: 5162 (1966).PubMedGoogle Scholar
  64. 64.
    T. Omura, R. Sato, D. Y. Cooper, O. Rosenthal, and R. W. Estabrook, Federation Proc. 24: 1181 (1965).Google Scholar
  65. 65.
    J. Bruyn and Konenkl, Ned. Akad. Wetenschap. Proc. Ser. C. 57: 41 (1954).Google Scholar
  66. 66.
    A. P. Tulloch, J. F. T. Spencer, and P. A. J. Gorin, Can. J. Chem. 40: 1326 (1962).CrossRefGoogle Scholar
  67. 67.
    H. Tizuka, M. Tida, and Y. J. Unami, J. Gen. Microbiol. 12: 119 (1966).CrossRefGoogle Scholar
  68. 68.
    F. Wagner, W. Zahn, and U. Bühring, Angew. Chem. 79: 314 (1967).CrossRefGoogle Scholar
  69. 69.
    M. J. Klug and A. J. Markovetz, J. Bacteriol. 93: 1847 (1967).PubMedGoogle Scholar
  70. 70.
    E. J. Nyns, J. P. Auguiere, and A. L. Wiaus, Z. Allgem. Mikrobiol. 9: 373 (1969).CrossRefGoogle Scholar
  71. 71.
    J. M. Lebeault, B. Roche, Z. Duvnjak, and E. Azoulay, Arch. Mikrobiol. 72: 140 (1970).PubMedCrossRefGoogle Scholar
  72. 72.
    C. E. Lowery, Jr., J. W. Foster, and P. Jurtshuk, Arch. Mikrobiol. 60: 246 (1968).PubMedCrossRefGoogle Scholar
  73. 73.
    J. M. Lebeault, E. T. Lode, and M. J. Coon, Biochem. Biophys. Res. Commun. 42: 413 (1971).PubMedCrossRefGoogle Scholar
  74. 74.
    E. Heinz, A. P. Tulloch, and J. F. T. Spencer, Biochem. Biophys. Acta 202: 49 (1970).PubMedGoogle Scholar
  75. 75.
    A. Lindenmayer and L. Smith, Biochem. Biophys. Acta 93: 445 (1965).Google Scholar
  76. 76.
    K. Ishidate, K. Kawazuchi, K. Tagawa, and B. Hagihara, J. Biochem. 65: 375 (1969).PubMedGoogle Scholar
  77. 77.
    J. A. Peterson, J. Bacteriol. 103: 714 (1970).PubMedGoogle Scholar
  78. 78.
    P. E. Kolattukudy, Plant Physiol. 44: 315 (1969).PubMedCrossRefGoogle Scholar
  79. 79.
    K. Tartivita and L. L. Jackson, Lipids 5: 35 (1970).PubMedCrossRefGoogle Scholar
  80. 80.
    L. L. Jackson, Lipids 5: 38 (1970).PubMedCrossRefGoogle Scholar
  81. 81.
    D. R. Nelson and D. R. Sukkestad, Biochemistry 9: 4601 (1970).PubMedCrossRefGoogle Scholar
  82. 82.
    M. Gunasekaran, J. L. Bushnell, and D. J. Weber, Res. Commun. Chem. Pathol. Pharmacol. 3: 621 (1972).PubMedGoogle Scholar
  83. 83.
    J. G. Jones and B. V. Young, Arch. Mikrobiol. 70: 82 (1970).PubMedCrossRefGoogle Scholar
  84. 84.
    E. J. Barron and D. J. Hanahan, J. Biol. Chem. 231: 493 (1961).Google Scholar
  85. 85.
    L. Kovac, J. Subik, G. Russ, and K. Kollar, Biochim. Biophys. Acta 144: 94 (1967).PubMedGoogle Scholar
  86. 86.
    J. Baraud, C. Cassagne, L. Genevois, and M. Joneau, C.R. Seanc. Acad. Sci. Paris 265: 83 (1967).Google Scholar
  87. 87.
    D. Jollow, G. M. Kellerman, and A. N. Linnane, J. Cell. Biol. 37: 221 (1968).PubMedCrossRefGoogle Scholar
  88. 88.
    T. Shafai and L. M. Lewin, Biochim. Biophys. Acta 152: 787 (1968).PubMedGoogle Scholar
  89. 89.
    W. W. Epstein, E. Aoyagi, and P. W. Jennings, Comp. Biochem. Physiol. 18: 225 (1966).PubMedCrossRefGoogle Scholar
  90. 90.
    P. E. Kolattukudy and T. J. Walton, Arch. Biochem. Biophys. 150: 310 (1972).PubMedCrossRefGoogle Scholar
  91. 91.
    P. E. Kolattukudy, Arch. Biochem. Biophys. 141: 381 (1970).PubMedCrossRefGoogle Scholar
  92. 92.
    M. Kusunose, K. Ichihara, E. Kusunose, and J. Nozaka, Physiol. Ecol. 15: 45 (1968).Google Scholar
  93. 93.
    M. Kusunose, J. Matsumoto, K. Ichihara, E. Kusunose, and J. Nozaka, J. Biochem. 61: 66 (1967).Google Scholar
  94. 94.
    M. Kusunose, K. Ichihara, E. Kusunose, J. Nozaka, and J. Matsumoto, Agr. Biol. Chem. 31: 990 (1967).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1974

Authors and Affiliations

  • John D. Weete
    • 1
  1. 1.Department of Botany and MicrobiologyAuburn UniversityAuburnUSA

Personalised recommendations