Phonon Calculations in Metals and Insulators

  • R. M. Pick
Part of the NATO Advanced Study Institutes Series book series (volume 2)


The application of the microscopic theory of phonons to actual calculations is the subject of these lectures. In principle I should thus cover the whole field of inorganic, and organic crystals. In practice the situation is exactly the reverse because calculations have, in fact, been restricted only to simple metals, i.e. metals without partly filled d shells, except for few cases which shall be discussed either briefly here or in L.J. Sham’s lectures.


Shell Model Phonon Spectrum Short Range Interaction Core Electron Microscopic Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Cohen, M.L. and Heine, V. (1971). Solid State Phys., 24, 37.CrossRefGoogle Scholar
  2. 2.
    Hartmann, W.M. and Milbrodt, T.O. (1971). Phys. Rev., B3, 4133.ADSGoogle Scholar
  3. 3.
    Price, D.L., Singwi, K.S. and Tosi, M.P. (1970). Phys. Rev., B2, 2983.ADSGoogle Scholar
  4. 4.
    Hubbard, J. (1957). Proa. Roy. Soc., A243, 336.MathSciNetADSGoogle Scholar
  5. 5.
    Geldart, D.J.W, and Vosko, S.H. (1966). Can. J. Phys., 44, 2137.CrossRefADSGoogle Scholar
  6. 6.
    Singwi, K.S., Sjölander, A., Tosi, M.P. and Land, R.H. (1970). Phys. Rev., B1, 1044.ADSGoogle Scholar
  7. 7.
    Floyd, E.R. and Kleinman, L. (1970). Phys. Rev., B2, 3947.ADSGoogle Scholar
  8. 8.
    Langreth, D.C. (1969). Phys. Rev., 181, 753.CrossRefADSGoogle Scholar
  9. 9.
    Harrison, W. (1964). Phys. Rev. 9 136, A1107.CrossRefGoogle Scholar
  10. 10.
    Shaw, R.W., Jr. and Pynn, R. (1969). J. Phys., C2, 2071.ADSGoogle Scholar
  11. 11.
    Sinha, S.K., Gupta, R.P. and Price, D.L. (1971). Phys. Rev. Lett., 26, 1324.CrossRefADSGoogle Scholar
  12. 12.
    Hanke, W. Phys. Rev., (to be published).Google Scholar
  13. 13.
    Martin, R.M. (1969). Phys. Rev., 186, 871.CrossRefADSGoogle Scholar
  14. 14.
    Kohn, W. (1959). Phys. Rev. Lett., 2, 393.CrossRefADSGoogle Scholar
  15. 15.
    Dick, B.G. and Overhauser, A.W. (1958). Phys. Rev., 112, 90.CrossRefADSGoogle Scholar
  16. 16.
    Schroder, U. (1966). Solid State Commun., 4, 347;CrossRefADSGoogle Scholar
  17. 16a.
    Nusslein, V. and Schroder, U. (1967). Phys. Stat. Sol., 21, 309;CrossRefADSGoogle Scholar
  18. 16b.
    Bilz, H. (1972). Computational Solid State Physios, (Plenum Press, New York), p. 309.CrossRefGoogle Scholar
  19. 17.
    Sinha, S.K., Gupta, R.P. and Price, D.L. Phys. Rev., (to be published).Google Scholar
  20. 18.
    Walter, J.P. and Cohen, M.L. (1970). Phys. Rev., B2, 1821.ADSGoogle Scholar
  21. 19.
    Pick, R.M. (1971). In Phonons, (Flammarion Press, Paris), p. 20.Google Scholar
  22. 20.
    Hanke, W. (1971). In Phonons, (Flammarion Press, Paris), p. 294.Google Scholar
  23. 21.
    Sham, L.J. (1972). Phys. Rev., B6, 3584.ADSGoogle Scholar
  24. 22.
    Gupta, R.P. and Pick, R.M. (To be published).Google Scholar

Copyright information

© Plenum Press, London 1974

Authors and Affiliations

  • R. M. Pick
    • 1
  1. 1.Département de Recherches PhysiquesUniversité de Paris VIParis Cedex 05France

Personalised recommendations