Many Body Perturbation Theory for Non-Uniform Electronic Systems

  • D. F. Scofield
Part of the NATO Advanced Study Institutes Series book series (NSSB, volume 2)


In the now famous papers by P. Hohenberg and W. Kohn [1] and in a sequel by W. Kohn and L.J. Sham [2] use was made of the fact that the total energy of an interacting electron system is a functional of the electronic charge density:
$$E[n(r)]=\int{\upsilon (r)n(r)dr+F[n(r)]}$$
where υ(r) is the external potential and F is a universal functional of the density. For the exact n(r), E[n(r)] is a minimum relative to variations of n(r) consistent with a variation of υ(r). Unfortunately, for an approximate F = F a the approximate energy functional E a obtained from equation (1) by replacing F[n] with F a[n] does not have to have any relation in particular to E. That is, E a may be greater or smaller or equal to E. An example is the Slater X α scheme [3] in which one can vary α to obtain any E a that one wants. Another fundamental objection is that given an F a there may or may not exist a solution to the Kohn and Sham equations in a region of physical interest. Even when the approximate energy functional has the appropriate properties leading to a n a(r) (there exists a point ñ a(r) such that E a[n] = min), the constraint used by Kohn and Sham that
$$\tilde{n}(r)=\sum\limits_{i}{{{\left| {{{\tilde{\phi }}}_{i}}(r) \right|}^{2}}}N=\int{\tilde{n}(r)}dr$$
(using the Lagrange multiplier metyhod this constraint leads to the K-S equations upon minimizing the functional [E a[n(r)] − λxn(r)dr] with respect to variations in n compatible with being produced by a variation in the external potential, supposing, of course, that the functional derivative exists) effectively raises the calculated energy even though it does not necessarily ensure N-representability. In principle other N-conserving constraints than (2) could be used.


Banach Space Normed Linear Space Contraction Mapping Principle Nonlinear Operator Equation Skeleton Graph 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Hohenberg, P. and Kohn, W. (1964). Phys. Rev., B136, 864.ADSCrossRefMathSciNetGoogle Scholar
  2. 2.
    Kohn, W. and Sham, L.J. (1965). Phys. Rev., A140, 1133.ADSCrossRefMathSciNetGoogle Scholar
  3. 3.
    Slater, J.C. (1951). Phys. Rev., 81, 385;ADSMATHCrossRefGoogle Scholar
  4. Gaspar, R. (1954). Acta Phys. Sci. Hung., 3, 263.MATHCrossRefMathSciNetGoogle Scholar
  5. 4.
    Scofield, D.F. (1971). Int. J. Quantum Chem., 5, 489.CrossRefGoogle Scholar
  6. 5.
    Herman, F., Van Dyke, J.P. and Ortenburger, I.B. (1969). Phys. Rev. Lett., 22, 807.ADSCrossRefGoogle Scholar
  7. 6.
    Ma, S. and Brueckner, K.A. (1968). Phys. Rev., 165, 18.ADSCrossRefGoogle Scholar
  8. 7.
    Some excellent references: Fetter, A.L. and Walecka, J.D. (1971). Quantum Theory of Many Particle Systems, (McGraw-Hill Book Co., New York);Google Scholar
  9. March, N.H., Young, W.H. and Sampanthar, S. (1967). The Many Body Problem in Quantum Mechanics, ( Cambridge University Press, London);Google Scholar
  10. Hedin, L. Lundquist S. (1969). In Solid State Physics, Vol 23, (eds. Seitz, F. and Turnbull, D), ( Academic Press, New York);Google Scholar
  11. Kumar, K. (1962). Perturbation Theory and The Nuclear Many Body Problem, ( North Holland, Amsterdam);Google Scholar
  12. Pines, D. (1962). The Many Body Problem, (W.A. Benjamin, New York);MATHGoogle Scholar
  13. Nozieres, P. (1964). Theory of Interacting Fermi Systems, (W.A. Benjamin, New York);MATHGoogle Scholar
  14. Mattuck, R.D. (1967). A Guide to Feynman Diagrams in The Many Body Problem, ( McGraw-Hill Book Co., New York).Google Scholar
  15. 8.
    Martin, P.C. and Schwinger, J.S. (1959). Phys. Rev., 115, 1342.ADSMATHCrossRefMathSciNetGoogle Scholar
  16. 9.
    Dyson, F.J. (1949). Phys. Rev., 75, 486, 1736.ADSMATHCrossRefMathSciNetGoogle Scholar
  17. 10.
    Brueckner, K.A. (1955). Phys. Rev., 100, 36.ADSMATHCrossRefGoogle Scholar
  18. 11.
    Goldstone, J. (1957). Proc. Roy. Soc., A239, 267.ADSMathSciNetGoogle Scholar
  19. 12.
    Kelly, H.P. (1968). Adv. Theor. Phys., 2, 75.Google Scholar
  20. 13.
    Kelly, H.P. (1964). Phys. Rev., 8136, 896.ADSCrossRefGoogle Scholar
  21. 14.
    Huzinaga, S. and Arnau, C. (1970). Phys. Rev., A1, 1285.ADSGoogle Scholar
  22. 15.
    Scofield, D.F., Dutta, N.C. and Dutta, C.M. (1972). Int. J. Quantum Chem., 6, 9.CrossRefGoogle Scholar
  23. 16.
    Miller, J.H. and Kelly, H.P. (1971). Phys. Rev, A3, 578.ADSGoogle Scholar
  24. 17.
    Hartree, D.R. (1957). The Calculation of Atomic Structures, ( John Wiley and Sons, New York).MATHGoogle Scholar
  25. 18.
    Froese, C. (1963). Can. J. Phys., 41, 1895.ADSMATHCrossRefMathSciNetGoogle Scholar
  26. 19.
    Harris, F.E., Kumar, L. and Monkhorst, H.J. (1973). Phys. Rev., B7, 2850.ADSGoogle Scholar
  27. 20.
    Hazelgrove, C.B. (1961). Math. Comp., 15, 323;CrossRefMathSciNetGoogle Scholar
  28. Davis, P.J. and Rabinowitz, P. (1967). Numerical Integration, (Blaisdell Publishing Co., Waltham, Massachusetts).MATHGoogle Scholar
  29. 21.
    Brillouin, L. (1933). Actual, Sci. Ind., No. 71; (1934). Actual. Sci. Ind., No. 159.Google Scholar
  30. 22.
    Slater, J.C. (1951). Phys. Rev., 81, 385;ADSMATHCrossRefGoogle Scholar
  31. Gaspar, R. (1954). Acta Phys. Sci. Hung., 3, 263.MATHCrossRefMathSciNetGoogle Scholar
  32. 23.
    Graves-Morris, P.R. (ed.) (1973). Padé Approximants, ( Lectures delivered at a Summer School Held at the University of Kent, July 1972, (The Institute of Physics, London ).MATHGoogle Scholar
  33. 24.
    Scofield, D.F. (1972). Phys. Rev. Lett., 29, 811.ADSCrossRefMathSciNetGoogle Scholar
  34. 25.
    The material presented here is standard. It may be found in any of the following: Kato, T. (1966). Perturbation Theory for Linear Operators, (Springer-Verlag, New York);MATHGoogle Scholar
  35. Reisz, F. and Nagy, B. Sz. (1955). Functional Analysis, ( Frederick Ungar, New York).Google Scholar
  36. 26.
    A very good source for what follows is: Ball, L.B. (1969). Computational Solutions of Nonlinear Operator Equations, (John Wiley and Sons, New York). Rall has also given a very nice survey of Vainberg’s book in: Anselone, P.M. (1964). Nonlinear Integral Equations, (University of Wisconsin Press, Madison).Google Scholar
  37. 27.
    Vainberg, M.M. (1964). Variational Methods for The Study of Nonlinear Operators, ( Holden-Day, San Francisco). This book also has a chapter on Newton’s method in Banach spaces by L.V. Kantorovich and G.P. Akilov.MATHGoogle Scholar
  38. 28.
    Zmuidzinas, J.S. (1970). Phys. Rev., B2, 4445.ADSGoogle Scholar
  39. 29.
    Kadanoff, L.P. and Baym, G. (1962). Quantum Statistical Mechanics, (W.A. Benjamin, New York).MATHGoogle Scholar
  40. 30.
    Schneider, B., Taylor, H.S. and Yaris, R. (1970). Phys. Rev., A1, 855.ADSGoogle Scholar
  41. 31.
    Scofield, D.F. Self-Consistent Green’s Function Method for Energy Bands, (to be published).Google Scholar

Copyright information

© Plenum Press, London 1974

Authors and Affiliations

  • D. F. Scofield
    • 1
  1. 1.Aerospace Research LaboratoriesWright-Patterson AFBUSA

Personalised recommendations