Advertisement

Effects of Exchange and Correlation in the Electron Bandstructure Problem

  • Lars Hedin
Part of the NATO Advanced Study Institutes Series book series (NSSB, volume 2)

Abstract

The typical example of an elementary excitation in a solid is the one-electron quasi-particle, that is the type of excitation that we are concerned with in a bandstructure calculation. We call it quasi-particle to remember that the excitation is something more general and complicated than just an electron moving in some periodic potential. To bring out the essential points in the simplest way, let us discuss the electron gas. The Hamiltonian in second quantization is
$$\text{H=}\sum\limits_{\text{k}}{{{\text{ }\!\!\varepsilon\!\!\text{ }}_{\text{k}}}\text{c}_{\text{k}}^{\text{+}}}{{\text{c}}_{\text{k}}}\text{+}\frac{\text{1}}{\text{2 }\!\!\Omega\!\!\text{ }}\sum\limits_{\text{q}}{\text{ }\!\!\upsilon\!\!\text{ }\left( \text{q} \right){{\text{ }\!\!\rho\!\!\text{ }}_{\text{q}}}{{\text{ }\!\!\rho\!\!\text{ }}_{\text{-q}}}}$$
(1)
where εk = h 2 k 2/2m is the kinetic energy, Ω the volume of the electron gas, ν(q) = 4 e 2/q 2 the Coulomb interaction and ρq the density Fourier component
$${{\rho }_{q}}=\sum\limits_{k}{c_{k+q}^{+}{{c}_{k}}}$$
(2)
We will not write out spin indices explicitly nor use fat letters for vectors, but leave that to the imagination of the reader. We have further written the electron-electron interaction on the form ρqρ-q which differs from the correct expression \(c_k^\dag + q^{c_{k'}^\dag } - q^c k'^c k\) by the (infinite) constant \(\text{N/2 }\!\!\Omega\!\!\text{ }\sum\limits_{\text{q}}{\text{ }\!\!\upsilon\!\!\text{ }\left( \text{q} \right)}\). Those who objects to infinite constants may flatten the Coulomb potential for r< r c which gives a convergence factor sin(gr c)/qr c. In the final expressions we can then take r c → 0.

Keywords

Dielectric Function Correlation Effect Elementary Excitation Crystal Potential Local Field Effect 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adler, S.L. (1962). Quantum Theory of the Dielectric Constant in real solids, Phys. Rev., 126, 413.MathSciNetADSMATHCrossRefGoogle Scholar
  2. Azaroff, L.V. (ed.) (1973). X-ray Spectroscopy, ( McGraw Hill, New York ).Google Scholar
  3. Baer, Y. and Busch, G. (1973). X-ray Photoemission from Aluminium, Phys. Rev. Lett., 30, 280.ADSCrossRefGoogle Scholar
  4. von Barth, U. and Hedin, L. (1972). A Local Exchange-Correlation Potential for the Spin-Polarized Case: I, J. Phys., C5, 1629.ADSGoogle Scholar
  5. Beeferman, L.W. and Ehrenreich, H. (1970). Optical Properties of Metals: Many-Electron Effects, Phys. Rev., B2, 364.ADSCrossRefGoogle Scholar
  6. Bennett,L.H. (ed.) (1971). Electronic Density of States, (Special Publication No. 323, National Bureau of Standards).Google Scholar
  7. Bergstresser, T.K. and Rubloff, G.W. (1973). Local Field Effects in the Optical Properties of Solids: The Far-Ultraviolet Spectra of Ionic Crystals, Phys. Rev. Lett., 30, 795.ADSCrossRefGoogle Scholar
  8. Ching, W.Y. and Callaway, J. (1973). Interband Optical Conductivity of Potassium, Phys. Rev. Lett., 30, 441.ADSCrossRefGoogle Scholar
  9. Fowler, W.B. (1966). Influence of Electronic Polarization on the Optical Properties of Insulators, Phys. Rev., 151, 657.ADSCrossRefGoogle Scholar
  10. Haken, H. and Schottky, W. (1958). Die Behandlung des Exzitons nach der Vielelektronentheorie, Z. Phys. Chem., 16, 218.CrossRefGoogle Scholar
  11. Hedin, L. (1965a). New Method for Calculating the One-Particle Green’s Function with Application to the Electron-Gas Problem, Phys. Rev., 139, A796.ADSCrossRefGoogle Scholar
  12. Hedin, L. (1965b). Effect of Electron Correlation on Band Structure of Solids, Ark. Fys., 30, 231.Google Scholar
  13. Hedin, L., Lundqvist, B.I. and Lundqvist, S. (1967). On the Single-Particle Spectrum of an Electron Gas, Int. J. Quant. Chem., 1S, 791.ADSCrossRefGoogle Scholar
  14. Hedin, L. and Johansson, A. (1969). Polarization Corrections to Core Levels, J. Phys., B2, 1336.ADSGoogle Scholar
  15. Hedin, L. and Lundqvist, S. (1969). Effects of Electron-Electron and Electron-Phonon Interactions on the One-Electron States of Solids, in Solid State Physics, Vol. 23, (eds. Seitz, Turnbull and Ehrenreich), (Academic Press, New York), pp. 1 181.Google Scholar
  16. Hedin, L., Lundqvist, B.I. and Lundqvist, S. (1970). Beyond One-Electron Approximation: Density of States for Interacting Electrons, J. Res. Nat. Bur. Stand., 74A, 417.Google Scholar
  17. Hedin, L. and Lundqvist, B.I. (1971). Explicit Local Exchange-Correlation Potentials, J. Phys., C4, 2064.ADSGoogle Scholar
  18. Hedin, L. (1973). In Electrons in Crystalline Solids, Proceedings of the 1972 Trieste Winter College.Google Scholar
  19. Hermanson, J. (1972). Plasmon Sidebands in Alkali Metals, Phys. Rev., B6, 400.ADSCrossRefGoogle Scholar
  20. Hermanson, J. (1972a). Simple Model of Electronic Correlation in Insulators, Phys. Rev., B6, 2427.Google Scholar
  21. Hohenberg, P. and Kohn, W. (1964). Inhomogeneous Electron Gas, Phys. Rev., 136, B864.MathSciNetADSCrossRefGoogle Scholar
  22. Kohn, W. and Sham, L.J. (1965). Self-Consistent Equations Including Exchange and Correlation Effects, Phys. Rev., 140, A1133.MathSciNetADSCrossRefGoogle Scholar
  23. Kunz, A.B. (1972). Electronic Polarons in Non-Metals, Phys. Rev., B6, 606.ADSCrossRefGoogle Scholar
  24. Layzer, A.J. (1963). Properties of the One-Particle Green’s Function for Non-Uniform Many-Fermion Systems, Phys. Rev., 129, 897.MathSciNetADSMATHCrossRefGoogle Scholar
  25. Lindhard, J. (1954). Dan. Math. Phys. Medd., 28, No. 8. Lundqvist, B.I. ( 1967a ). Single-Particle Spectrum of the Degenerate Electron Gas. I The Structure of the Spectral WeightGoogle Scholar
  26. Function, Phys. Kondens. Mater., 6, 193.Google Scholar
  27. Lundqvist, B.I. (1967b). Single-Particle Spectrum of the Degenerate Electron Gas. II Numerical Results for Electrons Coupled to Plasmons, Phys. Kondens. Mater., 6, 206.ADSCrossRefGoogle Scholar
  28. Lundqvist, B.I. (1968). Single-Particle Spectrum of the Degenerate Electron Gas. III Numerical Results in the Random Phase Approximation, Phys. Kondens. Mater., 7, 117.ADSCrossRefGoogle Scholar
  29. Lundqvist, B.I. (1969). Some Numerical Results on Quasi-Particle Properties in the Electron Gas, Phys. Stat. Sol., 32, 273Google Scholar
  30. Overhauser, A.W. (1971). Simplified Theory of Electron Correlations in Metals, Phys. Rev., B3, 1888.ADSCrossRefGoogle Scholar
  31. Rice, T.M. (1965). The Effects of Electron-Electron Interaction on the Properties of Metals, Ann. Phys., 31, 100.ADSCrossRefGoogle Scholar
  32. De Reggi, A.S. and Rea, R.S. (1973). Optical Transitions Between Conduction Bands in Copper and Copper-Based Alloys, Phys. Rev. Lett., 30, 549.ADSCrossRefGoogle Scholar
  33. Toyozawa, Y. (1954). Theory of the Electronic Polaron and Ionization of a Trapped Electron by an Exciton, Prog. Theor. Phys., 12, 421.ADSMATHCrossRefGoogle Scholar
  34. Williams, A.R., Janak, J.F. and Moruzzi, V.L. (1972). One-Electron Analysis of Optical Data in Copper, Phys. Rev. Lett., 28, 671.ADSCrossRefGoogle Scholar
  35. Wiser, N. (1963). Dielectric Constant with Local Fields Included, Phys. Rev., 129, 62.ADSMATHCrossRefGoogle Scholar

Copyright information

© Plenum Press, London 1974

Authors and Affiliations

  • Lars Hedin
    • 1
  1. 1.Department of Theoretical PhysicsUniversity of LundSweden

Personalised recommendations