Advertisement

Hartree-Fock Model Calculation for Atoms and Crystals Plus Corrections to the Hartree-Fock Excitation Energies

  • T. C. Collins
  • R. N. Euwema
  • G. G. Wepfer
  • G. T. Surratt
  • N. E. Brener
  • J. L. Ivey
  • D. L. Wilhite
Part of the NATO Advanced Study Institutes Series book series (NSSB, volume 2)

Abstract

One is interested in being able to describe many body systems of electrons and nuclei and their response to external perturbations. The systems are of course atoms, molecules, solids and gases and liquids. In doing so, one generally divides this problem into three parts: the description of the electronic system; the description of the nuclear motion; and the interaction of the two systems. The non-relativistic Hamiltonian of the total system is
$$H=\sum\limits_{b}{\frac{{{P}_{b}}^{2}}{2{{M}_{b}}}}+{{e}^{2}}\sum\limits_{b<c}{\frac{{{Z}_{b}}{{Z}_{c}}}{\left| {{\overset{\to }{\mathop{R}}\,}_{b}}-{{\overset{\to }{\mathop{R}}\,}_{c}} \right|}}+\sum\limits_{i}{\frac{{{P}_{i}}^{2}}{2m}}+{{e}^{2}}\sum\limits_{i<j}{\frac{1}{\left| {{\overset{\to }{\mathop{r}}\,}_{i}}-\overset{\to }{\mathop{{{r}_{j}}}}\, \right|}}-{{e}^{2}}\sum\limits_{b,i}{\frac{{{Z}_{b}}}{\left| {{\overset{\to }{\mathop{r}}\,}_{i}}-{{\overset{\to }{\mathop{R}}\,}_{b}} \right|}}$$
(1.1)
.

Keywords

Dielectric Function Compton Profile Local Basis Function Coulomb Integral Induce Charge Density 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Born, M. and Huang, K. (1954). Dynamical Theory of Crystal Lattices,(Oxford University Press).Google Scholar
  2. 2.
    Sham, L.J. Proceedings of NATO Advanced Study Institute on Elementary Excitations in Solids, Molecules and Atoms.Google Scholar
  3. 3.
    Fock, V. (1930). Z. Phys.,61, 126. See also the next reference.Google Scholar
  4. 4.
    Lewdin, P.O. (1955). Phys. Rev., 97, 1490.ADSCrossRefMathSciNetGoogle Scholar
  5. 5.
    LSwdin, P.O. (1969). Advances in Chemical Physics, Vol.XIV, (eds. Lefebvre, R. and Moser, C. ), ( Interscience Publishers ), p. 283.Google Scholar
  6. 6.
    Slater, J.C. (1960). Quantum Theory of Atomic Structure, (McGraw-Hill Book Company, Inc.), chapter 17, pp. 1–30.Google Scholar
  7. 7.
    Koopman, T. (1933). Physica, 1, 104.ADSCrossRefGoogle Scholar
  8. 8.
    Herring, C. (1940). Phys. Rev., 57, 1169.ADSCrossRefMATHGoogle Scholar
  9. 9.
    Slater, J.C. (1930). Phys. Rev., 36, 57.ADSCrossRefGoogle Scholar
  10. 10.
    Euwema, R.N. (1971). Phys. Rev., B4, 4332.ADSCrossRefGoogle Scholar
  11. 11.
    Kelly, H.P. (1969). Adv. Chem. Phys., 14, 129.CrossRefGoogle Scholar
  12. 12.
    Scofield, D.F., Dutta, N.C. and Dutta, C.M. (1972). Int. J. Quan. Chem., 6, 9.CrossRefGoogle Scholar
  13. 13.
    Euwema, R.N., Wilhite, D.L. and Surratt, G.T. (1973). Phys. Rev., B7, 818.ADSGoogle Scholar
  14. 14.
    Kunz, A.B. (1969). Phys. Stat. Sol., 36, 301.ADSCrossRefGoogle Scholar
  15. 15.
    Slater, J.C. (1951). Phys. Rev., 81, 385.ADSCrossRefMATHGoogle Scholar
  16. 16.
    Gaspar, R. (1954). Acta Phys. Sci. Hung., 3, 263.CrossRefMathSciNetMATHGoogle Scholar
  17. 17.
    Kohn, W. and Sham, L.J. (1965). Phys. Rev., A140, 1133.ADSCrossRefMathSciNetGoogle Scholar
  18. 18.
    Slater, J.C. (1971). Computational Methods in Band Theory, (eds. Marcus, P., Janak, J. and Williams,A.),(Plenum, N.Y.).Google Scholar
  19. 19.
    Liberman, D.A. (1966). Phys. Rev., 171, 1.ADSCrossRefGoogle Scholar
  20. 20.
    Raccah, P.M., Euwema, R.N., Stukel, D.J. and Collins, T.C. (1970). Phys. Rev., B1, 756.ADSCrossRefGoogle Scholar
  21. 21.
    Brillouin, L. (1933). Actual. Sci. Ind.,No. 71; (1934). Actual. Sci. Ind.,No. 159.Google Scholar
  22. 22.
    Hedin, L. and Lundqvist, S. (1969). Solid State Physics, Vol. 23, (eds. Seitz, F., Turnbull. D. and Ehrenreich, H.), ( Academic Press, New York).Google Scholar
  23. 23.
    Löwdin, P.O. (1962). Rev. Mod. Phys., 34, 520.ADSCrossRefMATHGoogle Scholar
  24. 24.
    Löwdin, P.O. (1955). Phys. Rev., 97, 1474.ADSCrossRefMathSciNetGoogle Scholar
  25. 25.
    By a contracted set of Gaussians, we mean that the {Am} in equation (3.1) are fixed and only one coefficient multiplying the basic function cp is allowed to have variational freedom in the SCF calculation.Google Scholar
  26. 26.
    Pruess, H. (1956). Z. Naturforsch, 11, 823.ADSGoogle Scholar
  27. 27.
    Whitten, J.L. (1963). J. Chem. Phys., 39, 349; (1966).ADSCrossRefGoogle Scholar
  28. Whitten, J.L. (1963). J. Chem. Phys., 44, 359.ADSCrossRefGoogle Scholar
  29. 28.
    Petke, J.D., Whitten, J.L., and Douglas, A.W. (1969). J. Chem. Phys., 51, 256.ADSCrossRefGoogle Scholar
  30. 29.
    Huzinaga, S. (Unpublished).Google Scholar
  31. 30.
    Slater, J.C. (1965). Quantum Theory of Molecules and Solids, Vol. 2, ( McGraw-Hill, New York ).MATHGoogle Scholar
  32. 31.
    Dirac, P.A.M. Proc. Camb. Phil. Soc., 26, 376.Google Scholar
  33. 32.
    The atom at zero is the first shell, the four nearest neighbors comprise the second shell, etc..Google Scholar
  34. 33.
    Roothan, C.C.J. (1960). Rev. Mod. Phys., 32, 179.ADSCrossRefMathSciNetGoogle Scholar
  35. 34.
    Wendroff, B. (1966). Theoretical Numerical Analysis, ( Academic Press, New York).MATHGoogle Scholar
  36. 35.
    Surratt, G.T., Euwema, R.N. and Wilhite, D.L. (1973). Int. J. Quan. Chem.,(to be published).Google Scholar
  37. 36.
    Wepfer, G.G., Euwema, R.N., Surratt, G.T. and Wilhite, D.L. (1973). Int. J. Quan. Chem.,(to be published).Google Scholar
  38. 37.
    Weiss, R.J. and Phillips, W.C. (1968). Phys. Rev., 176, 900.ADSCrossRefGoogle Scholar
  39. 38.
    Reed, W.A. and Eisenberger, P. (1972). Phys. Rev., B6, 4596.ADSCrossRefGoogle Scholar
  40. 39.
    Goroff, I. and Kleinman, L. (1970). Phys. Rev., 131, 2574.Google Scholar
  41. 40.
    Thewlis, J. and Davey, A.R. (1958). Phil. Mag., 1, 409.ADSCrossRefGoogle Scholar
  42. 41.
    McSkimin, H.J. and Bond, W.L. (1957). Phys. Rev., 105, 116.ADSCrossRefGoogle Scholar
  43. 42.
    Löwdin, P.O. (1971). Treatment of Exchange and Correlation Effects in Crystals, in Proceedings of the WiZbad Conference, (IBM).Google Scholar
  44. 43.
    Wigner, E.P. (1934). Phys. Rev., 46, 1002.ADSCrossRefMATHGoogle Scholar
  45. 44.
    Wigner, E.P. and Seitz, F. (1933). Phys. Rev., 43, 804.ADSCrossRefMATHGoogle Scholar
  46. 45.
    Gell-Mann, M. and Brueckner, K. (1957). Phys. Rev., 106, 364.ADSCrossRefMathSciNetMATHGoogle Scholar
  47. 46.
    Singwi, K.S., Sjölander, A., Tosi, M.P. and Land, R.H. (1970). Phys. Rev., B1, 1044.ADSGoogle Scholar
  48. 47.
    Hedin, L. and Lundqvist, B.I. (1971). J. Phys., C4, 2064.ADSGoogle Scholar
  49. 48.
    Herman, F., Van Dyke, J.P. and Ortenburger, I.B. (1969). Phys. Rev. Lett.,22 325Google Scholar
  50. 49.
    Collins, T.C., Euwema, R.N. and Kunz, A.B. (1972). Int. J. Quan. Chem., 6, 459.CrossRefGoogle Scholar
  51. 50.
    Leite, José R. and Ferreira, Luiz G. (1971). Phys. Rev., A3, 1224.ADSCrossRefGoogle Scholar
  52. 51.
    Ma, S. and Brueckner, K. (1968). Phys. Rev., 165, 18.ADSCrossRefGoogle Scholar
  53. 52.
    Tong, B.Y. (1971). Phys. Rev., A4, 1375.ADSCrossRefGoogle Scholar
  54. 53.
    Brener, N.E. (1973). J. Quan. Chem.,(to be published).Google Scholar
  55. 54.
    Kunz, A.B. (1972). Phys. Rev., B2, 606ADSGoogle Scholar
  56. Devreese, J.T., Kunz, A.B. and Collins, T.C. (1972). Solid State Commun., 11, 673.ADSCrossRefGoogle Scholar
  57. 55.
    Collins, T.C., Devreese, J.T., Evrard, R. and Kunz, A.B. (To be published).Google Scholar

Copyright information

© Plenum Press, London 1974

Authors and Affiliations

  • T. C. Collins
    • 1
  • R. N. Euwema
    • 1
  • G. G. Wepfer
    • 1
  • G. T. Surratt
    • 1
  • N. E. Brener
    • 1
  • J. L. Ivey
    • 1
  • D. L. Wilhite
    • 1
  1. 1.Wright-Patterson Air Force BaseAerospace Research LaboratoriesUSA

Personalised recommendations