Inelastic X-Ray Scattering from Electrons in Matter

  • P. M. Platzman
Part of the NATO Advanced Study Institutes Series book series (NSSB, volume 2)


Scattering experiments have given a great deal of important information about the microscopic behavior of an enormous variety of physically interesting systems. Neutrons, [1], electron beams [2] and a range of electromagnetic radiation [3,4] have all been successfully utilized by several groups to elucidate many of the interesting phenomena in condensed matter. The exact information which can be extracted from a given scattering experiment ultimately depends on the characteristics of the probe (typically its energy and momentum) and on the nature of its coupling to the medium. Neutrons have energy in the millivolt range with DeBroglie wave vectors approximating 10 cm−1. They couple primarily to mass (phonons) and magnetic moments (magnons, etc). X-rays are in a real sense the high-frequency limit of visible light. They extend manyfold the range of frequencies and wavelength one can hope to examine. They have energies in the 10 kilovolt range with wavevectors in the 108 cm−1 range. They couple primarily to charge and to light masses (i.e. electrons).


Band Structure Momentum Space Interband Transition Dynamic Structure Factor Large Momentum Transfer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Egelstaff, P.A. (1965). Thermal Neutron Scattering, (ed. Egelstaff, P.A.), ( Academic Press, New York).Google Scholar
  2. 2.
    Raether, H. (1965). Solid State Excitations by Electrons, Ergebnisse der exakten Natur-Wissenchaften, ( Springer-Verlag, Berlin).Google Scholar
  3. 3.
    Wright, George B. (1969). Light Scattering Spectra of Solids, Proceedings of the International Conference on Light Scattering Spectra of Solids, (ed. Wright, George B.), ( Springer-Verlag, New York).Google Scholar
  4. 4.
    Phillips, W.C. and Weiss, R.J. (1968). Phys. Rev.,171, 790Google Scholar
  5. 5.
    Eisenberger, P. and Platzman, P.M. (1970). Phys. Rev., A2, 415.ADSCrossRefGoogle Scholar
  6. 6.
    Eisenberger, P. (1970). Phys. Rev., A2, 1678; (1972). Phys. Rev., 5, 628.ADSGoogle Scholar
  7. 7.
    Eisenberger, P., Henneker, W.H. and Cade, P.E. (1972). J. Chem. Phys., 56, 1207.ADSCrossRefGoogle Scholar
  8. 8.
    Platzman, P.M. and Tzoar, N. (1965). Phys. Rev., 139, 410.ADSCrossRefGoogle Scholar
  9. 9.
    Luttinger, J.M. (1960). Phys. Rev., 119, 1153.MathSciNetADSMATHCrossRefGoogle Scholar
  10. 10.
    Eisenberger, P. Lam, L. Platzman, P.M. and Schmidt, P. (1972). Phys. Rev., B6, 3671.ADSCrossRefGoogle Scholar
  11. 11.
    Lundqvist, B.I. and Lyden, C. (1971). Phys. Rev., B4, 3360.ADSCrossRefGoogle Scholar
  12. 12.
    Daniel, E. and Vosko, S.H. (1960). Phys. Rev., 120, 2041.MathSciNetADSCrossRefGoogle Scholar
  13. 13.
    Pandy, K.C. and Lam, L. (1973). Phys. Lett., A43, 391.Google Scholar
  14. 14.
    Alexandropoulos, N.G. (1971). J. Phys. Soc. Japan, 31, 1790.ADSCrossRefGoogle Scholar
  15. 15.
    Miliotiis, D.M. (1971). Phys. Rev., B3, 701.ADSCrossRefGoogle Scholar
  16. 16.
    Eisenberger, P., Platzman, P.M. and Pandy, K.C., (to be published).Google Scholar
  17. 17.
    Platzman, P.M. and Wolff, P.A. (1973). Waves and interactions in Solid State Plasmas, ( Academic Press, New York).Google Scholar
  18. 18.
    Kanuzawa, H., Misaww, S. and Fuirta, E. (1960). Prog. Theor. Phys., 23.Google Scholar
  19. 19.
    Dubois, D.F. and Kivelson, M.F. (1969). Phys. Rev., 186, 409.ADSCrossRefGoogle Scholar

Copyright information

© Plenum Press, London 1974

Authors and Affiliations

  • P. M. Platzman
    • 1
  1. 1.Bell LaboratoriesMurray HillUSA

Personalised recommendations