Advertisement

Angle Resolved Photoemission: Theoretical Interpretation of Results

  • Ansgar Liebsch
Part of the NATO Advanced Study Institutes Series book series (NSSB, volume 32)

Abstract

During the past few years, photoelectron spectroscopy has emerged as a widely used technique in the study of the electronic properties of a variety of physical systems.1 Experimentally, a wealth of new information has become available through the use of electron analyzers with high angular resolution as well as continuously tunable light sources producing well polarized radiation. On the theoretical side, a much better understanding has been reached concerning the single-particle aspects of the excitation process. In fact, consensus appears to exist today with regard to their quantitative formulation. Schemes have been developed to evaluate the differential photoionization cross section for such different systems as clean surfaces, 2–5 molecules 6,7 and chemisorption complexes. 8,9 Although the entire field is still at an early stage, applications to specific cases in each of these areas have been carried out which show encouraging agreement between measured and calculated spectra. These examples represent evidence that the one-electron properties play a significant role in determining the characteristics of the photocurrent and that they can be used to obtain information about the electronic structure of the system.

Keywords

Matrix Element Differential Cross Section Normal Emission Outgoing Wave Bloch Wave 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Photoemission from Surfaces”, Eds. B. Feuerbacher, B. Fitton, and R.F. Willis, Wiley, London, 1977.Google Scholar
  2. 2.
    A. Liebsch, Sol. St. Commun. 19, 1193 (1976).ADSCrossRefGoogle Scholar
  3. 3.
    J.B. Pendry, Surf. Sci. 57, 679 (1976).ADSCrossRefGoogle Scholar
  4. 4.
    D.J. Spanjaard, D.W. Jepsen, and P.M. Marcus, Phys. Rev. B15, 1728 (1977).ADSGoogle Scholar
  5. 5.
    J.B. Danese and P. Soven, Phys. Rev. B16, 706 (1977).ADSCrossRefGoogle Scholar
  6. 6.
    D. Dill and J.L. Dehmer, J. Chem. Phys. 61, 692 (1974).ADSCrossRefGoogle Scholar
  7. 7.
    J.W. Davenport, Phys. Rev. Lett. 36, 945 (. 1976 ).ADSCrossRefGoogle Scholar
  8. 8.
    A. Liebsch, Phys. Rev. Lett. 38, 248 (1977).ADSCrossRefGoogle Scholar
  9. 9.
    M. Scheffler, K. Kambe, and F. Forstmann, Sol. St. Commun., to be published; K. Jacobi, M. Scheffler, K. Kambe, and F. Forstmann, Sol. St. Commun. 22,. 17 (1977).ADSCrossRefGoogle Scholar
  10. 10.
    C. Caroli, D. Lederer-Rozenblatt, B. Roulet, and D. Saint-James, Phys. Rev. B8, 4552 (1973).ADSGoogle Scholar
  11. 11.
    P.J. Feibelman, Phys. Rev. Lett. 34, 1092 (1975); K.L. Kliewer, Phys. Rev. Lett. 33, 900 (1974); G. Mukhopadhyay and S. Lundqvist, Sol. St. Commun. 21, 629 (1977).ADSCrossRefGoogle Scholar
  12. 12.
    J.W. Gadzuk, Phys. Rev. B14., 2267 (1976); and in Ref. 1.ADSGoogle Scholar
  13. 13.
    For a list of references, see various chapters in Ref. 1.Google Scholar
  14. 14.
    I. Adawi, Phys. Rev. 134A, 788 (1964).ADSCrossRefGoogle Scholar
  15. 15.
    G.D. Mahan, Phys. Rev. B2, 4334 (1970).ADSGoogle Scholar
  16. 16.
    W.L. Schaich and N.W. Ashcroft, Phys. Rev. B3, 2452 (1971).ADSGoogle Scholar
  17. 17.
    P.J. Feibelman and D.E. Eastman, Phys. Rev. B10, 4932 (1974).ADSGoogle Scholar
  18. 18.
    E.O. Kane, Phys. Rev. 127, 131 (1962).MathSciNetADSMATHCrossRefGoogle Scholar
  19. 19.
    G.W. Gobeli and F.G. Allen, Phys. Rev. 127, 141 (1962).ADSCrossRefGoogle Scholar
  20. 20.
    C.N. Berglund and W.E. Spicer, Phys. Rev. 136, A1030 (1964).ADSCrossRefGoogle Scholar
  21. 21.
    A. Liebsch, Phys. Rev. Lett. 32. 1203 (1974).ADSCrossRefGoogle Scholar
  22. 22.
    H. Bethe, L. Maximon, and F. Low, Phys. Rev. 91, 417 (1953);ADSMATHCrossRefGoogle Scholar
  23. G. Breit and H. Bethe, Phys. Rev. 93, 888 (1954).MathSciNetADSMATHCrossRefGoogle Scholar
  24. 23.
    J.W. Gadzuk, Phys. Rev. B10, 5030 (1974).ADSGoogle Scholar
  25. 24.
    C.B. Duke and C.W. Tucker, Surf. Sci. 15, 231 (1969).ADSCrossRefGoogle Scholar
  26. 25.
    P.J. Feibelman, Surf. Sci. 46, 558 (1974).ADSCrossRefGoogle Scholar
  27. 26.
    J. Cooper and R.N. Zare, Lectures in Theoretical Physics, Gordon and Breach, New York, 1969, Vol XLC.Google Scholar
  28. 27.
    E.W. Plummer, in “Interactions on Metal Surfaces”, Ed. R. Gomer, Springer, New York, 1975.Google Scholar
  29. 28.
    D.E. Eastman and M. Kuznietz, J. Appl. Phys. 42, 1396 (1971).ADSCrossRefGoogle Scholar
  30. 29.
    J.W. Cooper, Phys. Rev. 128, 681 (1962).ADSCrossRefGoogle Scholar
  31. 30.
    A. Liebsch, chapter J in Ref. 1.Google Scholar
  32. 31.
    J.W. Gadzuk, Phys. Rev. B12, 5608 (1975).ADSGoogle Scholar
  33. 32.
    J.F. Herbst, Phys. Rev. B15, 3720 (1977).ADSGoogle Scholar
  34. 33.
    C.N. Yang. Phys. Rev. 74, 764 (1948).ADSMATHCrossRefGoogle Scholar
  35. 34.
    J.L. Dehmer and D. Dill, Phys. Rev. Lett. 37, 1049 (1976).ADSCrossRefGoogle Scholar
  36. 35.
    J.L. Dehmer and D. Dill, Phys. Rev. Lett. 35, 213 (1975).ADSCrossRefGoogle Scholar
  37. 36.
    J.C. Slater and K.H. Johnson, Phys. Rev. B5, 844 (1972).ADSGoogle Scholar
  38. 37.
    G.R. Wright, C.E. Brion, and M.J. van der Wiel, J. Electr. Spectrosc. Relat. Phenomena 1, 457 (1973).CrossRefGoogle Scholar
  39. 38.
    E.A. Stern, Phys. Rev. B10, 3027 (1974); P.A. Lee and J.B. Penary, Phys. Rev. B11, 2795 (1975).Google Scholar
  40. 39.
    B.M. Kincaid and P. Eisenberger, Phys. Rev. Lett. 34, 1361 (1975).ADSCrossRefGoogle Scholar
  41. 40.
    J.W. Gadzuk, Sol. St. Commun. 15, 1011 (1974); Surf. Sci. 53, 132 (1975).ADSCrossRefGoogle Scholar
  42. 41.
    T. Gustafsson, E.W. Plummer, W. Gudat, and D.E. Eastman, to be published.Google Scholar
  43. 42.
    C.L. Allyn, T. Gustafsson, and E.W. Plummer, Chem. Phys. Lett. 47, 127 (1977).ADSCrossRefGoogle Scholar
  44. 43.
    J.W. Davenport, thesis, University of Pennsylvania, 1976.Google Scholar
  45. 44.
    J.C. Tracy, J. Chem. Phys. 56, 2736 (1972).ADSCrossRefGoogle Scholar
  46. 45.
    R.J. Smith, J. Anderson, and G.J. Lapeyre, Phys. Rev. Lett. 37, 1081 (1976).ADSCrossRefGoogle Scholar
  47. 46.
    T. Gustafsson, E.W. Plummer, D.E. Eastman, and J.L. Freeouf, Sol. St. Commun. 17, 391 (1975).ADSCrossRefGoogle Scholar
  48. 47.
    J.C. Fuggle, T.E. Madey, M. Steinkilberg, and D. Menzel, Phys. Lett. 51A, 163 (1975).CrossRefGoogle Scholar
  49. 48.
    J.B. Pendry, J. Phys. C 8, 2413 (1975).ADSCrossRefGoogle Scholar
  50. 49.
    B.W. Holland, J. Phys. C 8, 2697 (1975).CrossRefGoogle Scholar
  51. 50.
    A. Liebsch and E.W. Plummer, Discuss. Faraday Soc. 58, 19 (1975).Google Scholar
  52. 51.
    A. Liebsch, Phys. Rev. B13, 5 Ml (1976).Google Scholar
  53. 52.
    S.Y. Tong and M. Van Hove, Sol. St. Commun. 19, 543 (1976).ADSCrossRefGoogle Scholar
  54. 53.
    S. Anderson, Sol. St. Commun. 21, 75 (1977).ADSCrossRefGoogle Scholar
  55. 54.
    N.V. Smith and P.K. Larsen, in ref. 1.Google Scholar
  56. 55.
    B.I. Lundqvist, O. Gunnarsson, and H. Hjelmberg, in Ref. 1.Google Scholar
  57. 56.
    D.E. Eastman and J.K. Cashion, Phys. Rev. Lett. 27, 1520 (1971).ADSCrossRefGoogle Scholar
  58. 57.
    I.P. Batra and O. Robaux, Surf. Sci. 49, 653 (1975).ADSCrossRefGoogle Scholar
  59. 58.
    G.E. Becker and H.D. Hagstrom, Phys. Rev. Lett. 22, 1054 (1969).ADSCrossRefGoogle Scholar
  60. 59.
    N. Nicolaou and A. Modinos, Phys. Rev. B11, 3687 (1975).ADSGoogle Scholar
  61. 60.
    N. Kar and P. Soven, Sol. St. Commun. 20, 977 (1976);ADSCrossRefGoogle Scholar
  62. N. Kar, thesis, University of Pennsylvania, 1977, unpublished.Google Scholar
  63. 61.
    A. Liebsch, Phys. Rev. B17, (1978).Google Scholar
  64. 62.
    S. Anderson and C. Nyberg, Surf. Sci. 52, 489 (1975).ADSCrossRefGoogle Scholar
  65. 63.
    G.G. Tibbetts,, J.M. Burkstrand, and. J.C. Tracy, Phys. Rev. B15, 3652 (1977); K.Y. Yu, W.E. Spicer, I. Lindau, P. Pianetta, and S.F. Lin, Surf. Sci. 57, 157 (1976).ADSGoogle Scholar
  66. 64.
    G.J. Lapeyre, to be published.Google Scholar
  67. 65.
    V. Heine, Proc. Phys. Soc. 81, 300 (1968).ADSCrossRefGoogle Scholar
  68. 66.
    J.W. Jepsen, P.M. Marcus, and F. Jona, Phys. Rev. B5, 3933 (1972); J.B. Pendry, Low Energy Electron Diffraction, Academic, London, 1974.ADSGoogle Scholar
  69. 67.
    C.B. Duke, Adv. Chem. Phys. 27, 1 (1974).CrossRefGoogle Scholar
  70. 68.
    B. Feuerbacher and R.F. Willis, J. Phys. C 9, 169 (1976); G. Hansson and A. Flodström, to be published.ADSCrossRefGoogle Scholar
  71. 69.
    N.V. Smith and M.M. Traum, Phys. Rev. B11, 2087 (1975); N.V. Smith, M.M. Traum, J.A. Knapp, J. Anderson, and G.J. Lapeyre, Phys. Rev. B13, 4462 (1976).Google Scholar
  72. 70.
    L.F. Mattheiss, Phys. Rev. B8, 3719 (1973).ADSGoogle Scholar
  73. 71.
    N. Kar and P. Soven, Phys. Rev. B11, 3761 (1975).ADSGoogle Scholar
  74. 72.
    T. Gustafsson, P.O. Nilsson, and L. Wallden, Phys. Lett. A37, 121 (1971).CrossRefGoogle Scholar
  75. 73.
    B. Feuerbacher and B. Fitton, Phys. Rev. Lett. 30, 923 (1973); H. Becker, E. Dietz, U. Gerhardt, and H. Angermuller, Phys. Rev. B12, 2084. (1975).ADSCrossRefGoogle Scholar
  76. 74.
    J.B. Pendry, in Ref. 1.Google Scholar
  77. 75.
    J.B. Pendry and D.J. Titterington, Coimnun. on Phys. 2, 31 (1977).Google Scholar
  78. 76.
    D.M. Lloyd, C.M. Quinn, and N.V. Richardson, J. Phys. C 8, L371 (1976).CrossRefGoogle Scholar
  79. 77.
    L. Ilver and P.O. Nilsson, Sol. St. Commun. 18, 677 (1976).ADSCrossRefGoogle Scholar
  80. 78.
    P.O. Gartland and B.J. Slagsvold, Phys. Rev. B12, 4047 (1975),ADSGoogle Scholar
  81. 79.
    N.Kar and P. Soven, Sol. St. Commun. 19, 1041 (1976).ADSCrossRefGoogle Scholar
  82. 80.
    S.J. Gurman, J. Phys. C 9, L609 (1976).ADSCrossRefGoogle Scholar
  83. 81.
    S.Y. Tong, C.H. Li, and A.R. Lubinsky, Phys. Rev. Lett. 39, 498 (1977).ADSCrossRefGoogle Scholar
  84. 82.
    K. Jacobi, to be published; the originally observed oxygen- induced peak at -8 eV below Ef is now believed to be due to a second binding site, presumably below the first Ni plane. As in the angle-integrated spectra, angle resolved spectra reveal for chemisorbed oxygen a broad feature at -6 eV.Google Scholar
  85. 83.
    M. Van Hove and S.Y. Tong, J. Vac. Sci. Technol. 12, 230 (1975).ADSCrossRefGoogle Scholar
  86. 84.
    J. Hermanson, Sol. St. Commun. 22, 9 (1977).Google Scholar

Copyright information

© Plenum Press, New York 1978

Authors and Affiliations

  • Ansgar Liebsch
    • 1
  1. 1.Institut für FestkörperforschungKernforschungsanlage JülichJülichGermany

Personalised recommendations