Advertisement

Three Lectures on Lattice Gauge Theory

  • J. B. Kogut
Part of the NATO Advanced Study Institutes Series book series (NSSB, volume 31)

Keywords

Continuum Limit Gauge Field Lattice Theory Lattice Gauge Theory Vector Particle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    The term “Quantum Chromodynamics” has been suggested by M. Gell-Mann. Advantages of this theory over previous field theoretic formulations of the quark model were pointed out by H. Fritzsch, M. Gell-Mann and H. Leutwyler, Phys. Lett. 47B, 365 (1973).Google Scholar
  2. 2.
    G. H Hooft, Marseilles Conference on Gauge Theories, 1972 (unpublished); H.D. Politzer, Phys. Rev. Lett. 30, 1346 (1973); D. J. Gross and F. Wilczek, ibid. 30, 1343 (1973).ADSCrossRefGoogle Scholar
  3. 3.
    Applications to deep inelastic scattering: D.J. Gross and F. Wilczek, Phys. Rev. D8, 3633 (1973) and D9, 980 (1974), and H. Georgi and H.D. Politzer, Phys. Rev. D9, 416 (1974). Electron- positron annihilation : T. Appelquist and H. Georgi, Phys. Rev. D8, 4000 (1973) and A. Zee, Phys. Rev. D8, 4038 (1973). The AI = 1/2 rule: M.K. Gaillard and B.W. Lee, Phys. Rev. Lett. 33, 108 (1974) and works by many other authors.ADSGoogle Scholar
  4. 4.
    A recent interesting theory appears in F. Gursey and P. Sikivie, Phys. Rev. Lett. 36 , 775 (1 976). See also H. Georgi, H. Quinn and S. Weinberg, Phys. Rev. Lett. 33 , 451 (1 974) .ADSCrossRefGoogle Scholar
  5. 5.
    This speculation was made simultaneously by many authors. See, for example, S. Weinberg, Phys. Rev. Lett. 21/ 494 (1573) .Google Scholar
  6. 6.
  7. 7.
    K.G. Wilson, Phys. Rev. D10, 2445 (1 974).ADSGoogle Scholar
  8. 8.
    A.M. Polyakov (unpublished) and Phys..Lett. 59B, 82 (1 975) .Google Scholar
  9. 9.
    J. Kogut and Leonard Susskind, Phys. Rev. D11, 3 95 (1 975) .ADSGoogle Scholar
  10. 10.
    L. Susskind, Lectures presented at the Bonn Summer School, 1974.Google Scholar
  11. 11.
    J. Schwinger, Phys. Rev. Lett. 3, 296 (1959).ADSCrossRefGoogle Scholar
  12. 12.
    Exposing the color indices which are locally contracted, Eq. (1.31) is:Google Scholar
  13. 13.
    A similar argument implies that colorful gluons do not exist in the finite energy spectrum of the theory.Google Scholar
  14. 14.
    Colored quark models are discussed by H. Fritzsch and M. Gell-Mann, in Proceedings of the Sixteenth International Conference on High Energy Physics, The University of Chicago and National Accelerator Laboratory, 1972, edited by J.D. Jackson and A. Roberts ( National Accelerator Laboratory, Batavia, National Accelerator Laboratory, 1973 ), Vol. 2, p. 135.Google Scholar
  15. 15.
    T. Banks, L. Susskind and J. Kogut, Phys. Rev. D13, 1043 (1976). A. Carroll, J. Kogut, D.K. Sinclair and L. Susskind, Phys. Rev. D13 , 2270 (1 976).ADSGoogle Scholar
  16. 16.
    J. Shigemitsu and S. Elitzur, CLNS-333 (May 1976), to appear in Phys. Rev. D. The dynamical symmetry breaking and mass gap equation for large N were obtained by A. Zee, Phys. Rev. D12 , 3251 (1 975).Google Scholar
  17. 17.
    Leonard Susskind, “Lattice Fermions”, Ecole Normale Superieure preprint, December 1975 (submitted for publication).Google Scholar
  18. 18.
    Most recently, see A. Luther, Nordita preprint, June 1976, and the references therein.Google Scholar
  19. 19.
    J. Kogut and L. Susskind, Phys. Rev. D11, 3 59 4 (1 975) . J. Lowenstein and A. Swieca, Ann. Phys. (N.Y.) 68, 172 (1 971 ) .ADSGoogle Scholar
  20. 20.
    See E. Merzbacher, Quantum Mechanics (John Wiley and Sons, Inc., New York, 197o), 2nd Ed., Chap. 17, Sec. 8, for a discussion of the Feynman-Hellmann Theorem.Google Scholar
  21. 21.
    See, for example, Chap. 8 of D. Mattis, The Theory of Magnetism (Harper and Row, New York, 1965) and the references to the original publications cited there.Google Scholar
  22. 22.
    Background on Pade approximants may be gleaned from G.A. Baker, Jr., Essentials of Pade Approximants (Academic Press, New York, 1975 ). Other reviews which discuss many applications include J.L. Basdevant, Fortschritte der Physik 20, 283 (1973 (and J. Zinn-Justin, Physics Reports 1Cy No. 3 (1 973).Google Scholar
  23. 23.
    H. Bergknoff, “The Physical Particles of the Massive Schwinger Model”, CLNS-341, August 1976 (submitted to Nucl. Phys. B).Google Scholar
  24. 24.
    K. Lane, Phys. Rev. D10, 1353, 2605 (1974). See also D. J. Gross and A. Neveu, ibid. D10, 3235 (1974).Google Scholar
  25. 25.
    Rigorous results for the anharmonic oscillator were obtained by J.J. Loeffel, A. Martin, B. Simon and A.S. Wightman, Phys. Lett. 30B, 656 (1969). See also the general discussions of ref. 22.Google Scholar
  26. 26.
    K.G. Wilson and J. Kogut, Phys. Reports 12C, 75 (1974) .ADSCrossRefGoogle Scholar
  27. 27.
    See the second article of ref. 24.Google Scholar
  28. 28.
    R.F. Dashen, B. Hasslacher and A. Neveu, Phys. Rev. D12 / 2443 (1 975) .MathSciNetADSGoogle Scholar
  29. 29.
    29..A.A. Migdal, “Phase Transitions in Lattice and Gauge Systems”, Chernogolovka reprint, 1975), and “Recursion Equations in Gauge Theories”, ibid., 1975.Google Scholar
  30. 30.
    J. Kogut, D.K. Sinclair and Leonard Susskind, CLNS-336 (June 1976), to appear in Nucl. Phys. B.Google Scholar
  31. 31.
    R. Fredrickson, in progress.Google Scholar
  32. 32.
    The C.O.T.Y. Collaboration, “Strong Coupling Calculations of the Hadron Spectrum of Quantum Chromo- dynamics”, CLNS-339 (July 4, 1976 ).Google Scholar
  33. 33.
    K.G. Wilson, unpublished.Google Scholar

Copyright information

© Plenum Press, New York 1978

Authors and Affiliations

  • J. B. Kogut
    • 1
  1. 1.Laboratory of Nuclear StudiesCornell UniversityIthacaUSA

Personalised recommendations