Advertisement

Some Remarks on Implementing Hadrons as Extended Objects with Applications to Dual Models

  • L. C. Biedenharn
  • H. van Dam
Part of the NATO Advanced Study Institutes Series book series (NSSB, volume 31)

Summary

The Poincaré covariant quantal theory of a Regge trajectory (realized in Minkowski space) is reviewed and the classical (relativistic) limit for this structure is developed. It is demonstrated that this classical limit motion corresponds identically to the leading trajectory of the classical relativistic motion given by the Nambu-Goto-Nielsen action.

Keywords

Minkowski Space Rest Frame Regge Trajectory Dual Model Extend Object 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Rebbi, C. (1974), Phys. Reports, 12C, 1 - 73.MathSciNetADSCrossRefGoogle Scholar
  2. 2.
    Mandelstam, S. (1974) Phys. Reports, 13C, 259 - 353.ADSCrossRefGoogle Scholar
  3. 3.
    Frampton, P.H. (1974) “Dual Resonance Models” (W.A. Benjamin, Inc., Reading, Mass. )Google Scholar
  4. 4.
    Mandelstam, S. (1971) Brandeis University Summer Institute, Vol. 1, 165 ( M.I.T. Press, Cambridge, Mass. )Google Scholar
  5. 5.
    Gliozzi, F., Scherk, J., and Olive, D. (1976) PTENS preprint, Sept. Cf. also the lecture by deVecchia at this conference.Google Scholar
  6. 6.
    Work by Volkov, Sjelest and Sjeldakhin on this possibility was pointed out to us at the conference by Dr. K. Litwin.Google Scholar
  7. 7.
    Biedenharn, L.C., and van Dam, H. (1974) Phys. Rev. D9, 471–486.MathSciNetADSGoogle Scholar
  8. 8.
    van Dam, H., and Biedenharn, L.C. (1976) Phys. Rev. D14, p. 405–417.MathSciNetGoogle Scholar
  9. 9.
    Staunton, L.P. (1976), Phys. Rev. D13, 3269.MathSciNetADSGoogle Scholar
  10. 10.
    Nambu, Y. (1976) Proc. International Conf. on Particles and Fields, ( Interscience, N.Y.).Google Scholar
  11. 11.
    Barut, A.0. (1971), “Dynamical Groups and Generalized Symmetries” (U. of Canterbury Press, Chch. N.Z.).Google Scholar
  12. 12.
    Dirac, P.A.M. (1972) Proc. R. Soc. Lond. A328, 1–7.ADSCrossRefGoogle Scholar
  13. 13.
    Dirac, P.A.M. (1971) Proc. R. Soc. Lond. A322, 435–445.ADSCrossRefGoogle Scholar
  14. 14.
    Staunton, L.P. (1974) Phys. Rev. D10, 1760–1767.MathSciNetADSCrossRefGoogle Scholar
  15. 15.
    Dirac, P.A.M. (1964) “Lectures on Quantum Mechanics” (Yeshiva Univ. Press, N.Y.).Google Scholar
  16. 16.
    Barut, A.O. and Euru, I.H. (1973) Lettere al N.C. 8, 768–771.CrossRefGoogle Scholar
  17. 17.
    Hanson, A.J. and Regge, T. (1974) Ann. of Phys. (N.Y.) 87, 498–566.MathSciNetADSCrossRefGoogle Scholar
  18. 18.
    The calculations are not entirely trivial (singularities enter). The physical requirements that po be positive, and additive, resolves these ambiguities.Google Scholar

Copyright information

© Plenum Press, New York 1978

Authors and Affiliations

  • L. C. Biedenharn
    • 1
  • H. van Dam
    • 2
  1. 1.Institut für Theoretische PhysikJohann Wolfgang Goethe UniversitätFrankfurt/MainGermany (B.R.D.)
  2. 2.Physics DepartmentUniversity of North CarolinaChapel HillUSA

Personalised recommendations