Inclusive Correlations in the Central Region

  • Gerald H. Thomas
Part of the NATO Advanced Study Institutes Series book series (NSSB, volume 31)


The subject of this talk is hadron correlations at very high energies. These correlations are discussed first from the point of view of the cluster picture. The cluster picture attempts to explain why the correlations are present in data by postulating a few simple properties for objects called clusters. Unfortunately, the clusters make no direct contact with known physical mechanisms. To attempt a remedy, the correlations are then discussed from a more fundamental viewpoint. We try to see how people have tried to describe the data as due to resonance production and decay. The dynamics is supposed to be that of Regge exchanges. A simple Mueller-Regge exercise is. described and shown to work qualitatively. The last topic considered is that of coherent interferences as a possible source of hadron correlations. It is argued that these interference phenomena are a natural consequence of resonance production. Based on available data, known resonances and their coherent interferences do not account for the observed correlations.


Transverse Momentum Vertex Function Longitudinal Momentum Interference Phenomenon Threshold Enhancement 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    There is a large literature on the subject of clusters. One of the more recent and most detailed fits to data using the cluster model is by A. Arneodo and G. Plaut, Nucl. Phys. B107, 262 (1976).ADSCrossRefGoogle Scholar
  2. 2.
    E. Fermi, Progr. Theoret. Phys. 5, 570 (1950); Phys. Rev. 92, 452 (1953); 953, 1434 (1954).Google Scholar
  3. 3.
    P. Carruthers and F. Zachariasen, Theories and Experiments in High-Energy Physics, eds. A. Perlmutter and S.M. Widmayer ( Plenum Press, N.Y. 1975 ), p. 349.CrossRefGoogle Scholar
  4. 4.
    ABFST: D. Amati, S. Fubini, and A. Stanghellini, Nuovo Cimento 26, 896 (1962); L. Bertocchi, S. Fubini, and M. Tonin, Nuovo Cimento 25, 626 (1962).CrossRefGoogle Scholar
  5. 5.
    G.F. Chew and A. Pignotti, Phys. Rev. 276, 2112 (1968).ADSCrossRefGoogle Scholar
  6. 6.
    J. Whitmore, Phys. Reports 27C, 187 (1976), Fig. 8a.Google Scholar
  7. 7.
    Ibid., Fig. 8c.Google Scholar
  8. 8.
    Ibid., Fig. 73.Google Scholar
  9. 9.
    Eg. E.L. Berger and A. Krzywicki, Phys. Letters 36B, 380 (1971).ADSGoogle Scholar
  10. 10.
    E.L. Berger and C.C. Fox, Phys. Letters 47B, 162 (1973).ADSGoogle Scholar
  11. 11.
    A clear account of clusters and their properties can be found in E.L. Berger, Nucl. Phys. B85, 61 (1975).ADSCrossRefGoogle Scholar
  12. 12.
    C. Quigg, P. Pirila, and G.H. Thomas, Phys. Rev. Letters 34, 290 (1975).ADSCrossRefGoogle Scholar
  13. 13.
    C. Quigg, P. Pirila, and G.H. Thomas, Phys. Rev. D12, 92 (1975).CrossRefGoogle Scholar
  14. 14.
    E.L. Berger, R. Singer, G.H. Thomas and T. Kafka, Phys. Rev. 15, 206 (1977).ADSGoogle Scholar
  15. 15.
    Various review articles may be consulted for introductory material: Eg. E.L. Berger in Proc. II Int. Colloquium on Multi- particle Dynamics, Helsinki, 1971, Edited by E. Byckling, K. Kajantie, H. Satz and J. Tuominiemi (Univ. of Helsinki, 1971); Chan Hong-Mo in Proc. Int. Conf. on High Energy Collisions, Oxford, 1972, Ed. J.R. Smith ( RHEL, Chilton, 1972 ).Google Scholar
  16. 16.
    Aachen-CERN-Heidelberg-Munich ISR collaboration, K. Eggert et al., Nucl. Phys. B86, 201 (1975); Michigan State-Argonne-Fermilab- Iowa State-Maryland collaboration, B.Y. Oh et al., Phys. Letters 56B, 400 (1975); G. A. Smith, paper presented at the Third International Winter Meeting on Fundamental Physics, Parador de Sierra Nevada, Spain, 1975.ADSCrossRefGoogle Scholar
  17. 17.
    R.C. Brower, R.N. Cahn, and J. Ellis, Phys. Rev. D7, 1080 (1973); J.R. Freeman and C. Quigg, Phys. Letters, 47B, 39 (1973); S. Pinsky and G. Thomas, Phys. Rev. D9, 13~50 (1974).Google Scholar
  18. 18.
    G. Thomas, ANL-HEP-PR-76-33, Phys. Rev. to be published.Google Scholar
  19. 19.
    R. Hanbury Brown and R.Q. Twiss, Proc. R. Soc. A248, 300 (1957).Google Scholar
  20. 20.
    G. Goldhaber, S. Goldhaber, W. Lee and A. Pais, Phys. Rev. 120, 300 (1960).MathSciNetADSCrossRefGoogle Scholar
  21. 21.
    V.G. Grishin, G.I. Kopylov and H.I. Podgoretskii, Yad. Fiz. 13, 1116 (1971) [English Trans.: Sov. J. Nucl. Phys. 13, 638 (1971)]; V.G. Grishin, G.I. Kopylov and H.I. Podgoretskii, Yad. Fiz. l4, 600 (1971) [English Trans.: Sov. J. Nucl. Phys. 1, 335 (1972)]; G.I. Kopylov and H.I. Podgoretskii, Yad. Fiz. 14, 1081 (1971) [English Trans.: Sov. J. Nucl. Phys. 14, 604 (1972)]. G.I. Kopylov, Yad. Fiz. 15, 178 (1972) [English Trans.: Sov. J. Nucl. Phys. 15, 103 (1972)]; E.V. Shuryak, Phys. Lett. 44JB, 387 (1973); G. Cocconi, Phys. Lett. 49B, 459 (1974); G.I. Kopylov, Phys. Lett. 50B, 472 (1974); G. I. Kopylov and H.I. Podgoretskii, Yad. Fiz. 19, 434 (1974) [English Trans.: Sov. J. Nucl. Phys. 19, 215 (1974)]; William J. Knox, Phys. Rev. DIP, 65 (1974).Google Scholar
  22. 22.
    R.F. Amann and P.H. Shah, Phys. Lett. 42B, 353 (1972); J. Steinhoff, Nucl. Phys. B55, 132 (1973); H. Biyajima and O. Hiyamura, Phys. Lett. 53B, 181 (1974); 57B, 376 (1975); A. Arneodo and G. Plaut, Nucl. Phys. B9,51 (1975); J. Ranft and G. Ranft, Phys. Lett. 57B, 373 (1975) and references therein.Google Scholar
  23. 23.
    The argument given here is basically that used by Podgoretskii and co-workers2l, except we must take into account the transverse momentum damping of produced mesons.Google Scholar

Copyright information

© Plenum Press, New York 1978

Authors and Affiliations

  • Gerald H. Thomas
    • 1
  1. 1.High Energy Physics DivisionArgonne National LaboratoryArgonneIllinoisUSA

Personalised recommendations