Electronic States in Random Substitutional Alloys: The CPA and Beyond

  • B. L. Gyorffy
  • G. M. Stocks
Part of the NATO Advanced Study Institutes Series book series (NSSB, volume 24)


Most elements in the periodic table are metals. In a metallic environment the excess charge on an impurity is screened out locally with the result that the heats of mixing for most combinations of metals are small compared with those in systems with covalent or ionic binding1. Consequently, there are a countless number of metallic solid solutions2. As you might expect these display a vast variety of thermal, electrical, mechanical and magnetic properties. Hopefully, after these lectures, you will conclude that the study of metallic alloys is an interesting part of solid-state physics. Nevertheless, we would also like you to keep in mind that much of the thrust behind the work on alloys comes from the needs of industry. Progress in many important technologies is materials limited, finding the alloy with the right properties is frequently the key to a breakthrough.


Green Function Brillouin Zone Fermi Energy Band Theory Coherent Potential Approximation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    “Thermochemical Data of Alloys” (Pergamon Science Series Vol. 3 1956 ) by ( X Kubaschewski and J. A. CatterallGoogle Scholar
  2. 2.
    “Constitution of Binary Alloys”, First Supplement (McGraw Hill Book Co. 1965) by R. P. ElliottGoogle Scholar
  3. 3.
    “The Theory and the Properties of Metals and Alloys” N. F. Mott and H. Jones (1936) Oxford University PressGoogle Scholar
  4. 4.
    N. F. Mott Adv. Phys. 13 326 (1964). See also J. Friedel Nuovo Cimento Sup. 7 2F7 (1958)Google Scholar
  5. 5.
    M. Shimizu, T. Takahashi and A. Katsuki, J. Phys. Soc. Japan 18 1192. However, Friedel was dissatisfied with this explanation and proposed the “virtual bound state” model as an alternative (J. Friedel Adv. Phys. 3 466 (1954) and Canadian J. Phys. 34 1190 (1956). At low concentration his description is in facFvery close to that afforded by the CPA to be discussed in these lectures.Google Scholar
  6. 6.
    D. H. Seib and W. E. Spicer Phys. Rev. B2 1676 (1970) also N. J. Shevchik and C. M. Penchina FEys. Stat. Sol. 6 70 619 (1975)Google Scholar
  7. 7.
    L. Nordheim Ann. Physik 9 607 (1931), 641 (1931) T. Muto Sci. Papers Inst. Phys. Chem. Res. (Tokyo) 34 377 (1938)Google Scholar
  8. For actual calculations using the virtual crystal approximation see C. B. Sommers, H. Amar and K. H. Johnson Bull. Am. Phys. Soc. 11 73 (1966)Google Scholar
  9. 8.
    E. A. Stern Phys. Rev. Lett. 26 1630Google Scholar
  10. 9.
    E. G. Brovman and Y. M. Kagan “Dynamical Properties of Solids” Vol.1 ed. G. K. Horton and A. A. Maradudin (North Holland 1974 )Google Scholar
  11. 10.
    “Pseudopotentials in the Theory of Metals” W. A. Harrison (W. A. Benjamin 1966 )Google Scholar
  12. 11.
    “Mathematical Physics in One-Dimension” (Academic New York 1966 ) E. G. Lieb and D. C. MattisGoogle Scholar
  13. 12.
    “Theory of Lattice Dynamics in the Harmonic Approximation” (Academic Press 1961 ) A.A. Maradudin E.W. Mont roll and I. P. IpatovaGoogle Scholar
  14. 13.
    T. Wolfram and J. Callaway Phys. Rev. 130 2207 (1963) also “Amorphous Magnetism” ed. H. O. Hooper and A. M. De Graaf ( Plenum, New York 1973 )Google Scholar
  15. 14.
    Y. Onodera and Y. Tayarawa J. Phys. Soc. Japan 27 341 (1968)ADSGoogle Scholar
  16. 15.
    International Conference on Disordered Metallic Systems Strasbourg, France 10–15 Sept. J. Phys. (Paris) 35CGoogle Scholar
  17. 16.
    R. P. Abou-Chacra, P.W. Anderson and D.J. Thouless J. Phys. C. 6 1934 (1973), 65 (1974)ADSCrossRefGoogle Scholar
  18. 17.
    L. Nordheim Ann. Physik 9 607 (1931) 641 (1931)ADSCrossRefGoogle Scholar
  19. 18.
    P. Soven Phys. Rev. 156 809 (1967), 178 1136 (1969)ADSCrossRefGoogle Scholar
  20. 19.
    D.W. Taylor Phys. Rev. 156 1017 (1968)ADSCrossRefGoogle Scholar
  21. 20.
    Y. Onodera and Y. Toyazawa J. Phys. Soc. Japan 24 341 (1968)ADSCrossRefGoogle Scholar
  22. 21.
    R. J. Elliott, J. A. Krumhans and P. L. Leath Rev. Mod. Phys 46 465 (1974)ADSCrossRefGoogle Scholar
  23. 22.
    H. Ehrenreich and L. Schwartz “Solid State Physics” ed. H. Ehrenreich, F. Seitz and D. Turnbull (Academic Press) Vol. 31 (1976)Google Scholar
  24. 23.
    B. E. Warren “X-ray diffraction” (Addison-Wesly Publishing Co. Reading, Mass 1969 )Google Scholar
  25. 24.
    R. N. Aiyer, R. J. Elliott, J. A. Krumhansl and P. L. Leath Phys. Rev. 1006 (1969)Google Scholar
  26. 25.
    J. Callaway “Quantum Theory of the Solid State” Part B (Academic Press 1974) p. 385Google Scholar
  27. 26.
    B. Velicky, S. Kirkpatrick and H. Ehrenreich Phys. Rev. 175 747 (1968)ADSCrossRefGoogle Scholar
  28. 27.
    P. L. Leath J. Phys. C. 6 1559 (1973)ADSCrossRefGoogle Scholar
  29. 28.
    L. Schwartz and E. Siggia Phys. Rev. B5 383 (1972)ADSCrossRefGoogle Scholar
  30. 29.
    A. R. Bishop Solid State Comm. 17 1405 (1975)ADSCrossRefGoogle Scholar
  31. 30.
    R. Alben, M. Blume, H. Krakauer and L. Schwartz Phys. Rev. B12 4090 (1975)ADSGoogle Scholar
  32. 31.
    G. M. Stocks, R.W. Williams and J. S. Faulkner Phys. Rev. B4 4390 (1971)ADSGoogle Scholar
  33. 32.
    S. Kirkpatrick, B. Velicky and H. Ehrenreich Phys. Rev. B1 3250 (1970)ADSGoogle Scholar
  34. 33.
    J. S. Faulkner Phys. Rev. (To be published)Google Scholar
  35. 34.
    G. M. Stocks, R.W. Williams and J. S. Faulkner J. Phys. F. Metal Physics 3 1688 (1973)ADSCrossRefGoogle Scholar
  36. 35.
    T. Kaplan and M. Mosstoller Phys. Rev.Google Scholar
  37. 36.
    K. Levin and H. Ehrenreich Phys. Rev. B3 4172 (1971) F. Brouers and A.V. Vedayev Phys. Rev. B5 348 (1972)Google Scholar
  38. 37.
    Quantum Theory of the Solid State11 (Academic Press 1974) p. 291 J. CallawayGoogle Scholar
  39. 38.
    J. M. Ziman “Solid State Physics” Ed. H. Ehrenreich, F. Seitz and D. Turnbull (Academic Press 1970) Vol. 26Google Scholar
  40. 39.
    E. Wigner and F. Seitz “Solid State Physics” Ed. F. Seitz and D. Turnbull (Academic Press 1954) vol. I. p. 97Google Scholar
  41. 40.
    “Greens Functions for Solid State Physics” S. Doniach and E. H. Sondheimer (Benjamin Inc. 1974 ) Chap. 7Google Scholar
  42. 41.
    P. Hohenberg and W. Kohn Phys. Rev. 136B 864 (1984)MathSciNetADSCrossRefGoogle Scholar
  43. 42.
    W. Kohn and L.J. Sham Phys. Rev. 140 A1133 (1965)MathSciNetADSCrossRefGoogle Scholar
  44. 43.
    Quantum Theory of Molecules and Solids IV (McGraw Hill Book Co. 1974 ) J. SlaterGoogle Scholar
  45. 44.
    J. Slater “Technical Reports of the Solid State and Molecular Group”. M. I. T. 1952-1954Google Scholar
  46. 45.
    Quantum Theory of Molecules and Solids Vol. IV ( McGraw-Hill Book Co. 1974 ) J. SlaterGoogle Scholar
  47. 46.
    L. Hodges, R. E. Watson and H. Ehrenreich Phys. Rev. B5 3953 (1972)ADSGoogle Scholar
  48. 47.
    N.D. Mermin Phys. Rev. 137 A 1441 (1965)Google Scholar
  49. 48.
    L. M. Mattheiss Phys. Rev. 133 A1399Google Scholar
  50. 49.
    T. L. Louks “Augmented Plane Wave Method” Benjamin: (New York 1967 )Google Scholar
  51. 50.
    Scattering theory has an enormous literature. The most relevant to our lectures is the compendium of results and derivations by P. Lloyd and P. V. Smith Adv. Phys. 21 p. 69 (1972). We shall follow their notation closely. In particular we shall use the same spherical harmonics and spherical Bessel and Neuman functions and units (see their glossary).Google Scholar
  52. 51.
    B. L. Gyorffy and M.J. Stott “Band Structure Spectroscopy of Metals and Alloys” Ed. D.J. Fabian and L.M.Watson (Academic Press 1973 )Google Scholar
  53. 52.
    J. Korringa Physica 13 392 (1947), W. Kohn N. Rostoker Phys. Rev. 94, 1111 (1954) see also B. Segall and F. S. Ham Methods in Computational Physics (Academic Press 1968) Vol. 8 Chap. 7Google Scholar
  54. 53.
    J. S. Faulkner, H. L. Davis and H.W. Joy Phys. Rev. 161 556 (1967)ADSCrossRefGoogle Scholar
  55. 54.
    Mittag-Leffler Acta Math. (1884) more usefully “The Theory of the Scattering Matrix” (Macmillan Co. 1967) by A. O. Barut Appendix 6.Google Scholar
  56. 55.
    W. Butler, J. Olson, J. S. Faulkner and B. L. Gyorffy (to be published)Google Scholar
  57. 56.
    B. L. Gyorffy “Fondamenti Di Fisica Dello Stato Solido” Ed. F. Fumi University of GenovaGoogle Scholar
  58. 57.
    J. Korringa J. Phys. Chem. Solids 7 252 (1958)ADSCrossRefGoogle Scholar
  59. 58.
    H. Shiba Progr. Theoret. Phys. (Kyoto) 16 77 (1971)ADSCrossRefGoogle Scholar
  60. 59.
    P. Soven Phys. Rev. B 2 4715 (1970)ADSCrossRefGoogle Scholar
  61. 60.
    B. L. Gyorffy Phys. Rev. 5B, 2382 (1972)ADSGoogle Scholar
  62. 61.
    B. L. Gyorffy and G.M. Stocks J. de Phys. 5 C4–75 (1974) D. House, B. L. Gyorffy, G. M. Stocks, J. de Phys. 5 C4–81 (1974)Google Scholar
  63. 62.
    U. Gerhardt and E. Dietz Phys. Rev. Lett. 26 1477 (1971) P.O. Garland and B. J. Slagsvold Phys. Rev. 12B (1975)Google Scholar
  64. 63.
    O. Gunnarson J. Phys. F: Metal Physics 6 587 (1976)ADSCrossRefGoogle Scholar
  65. 64.
    “Introduction to Solid State Physics” (3rd Edition p. 580) (J. Wiley and Sons Inc. 1966 ) C. KittelGoogle Scholar
  66. 65.
    F. Cyrot-Lackman and F. Ducastelle Phys. Rev. Lett. 27 429Google Scholar
  67. 66.
    F. Brouers, F. Ducastelle, F. Gautier, J. van der Rest J. de Phys. 35 C4–89Google Scholar
  68. 67.
    J. Kanamori J. de Phys. 35 C4–131 (1974)Google Scholar
  69. 68.
    J. Giner, F. Brouers, F. Gautier and J. van der Rest J. Phys. F.: Metal Physics 6 1281 (1976)ADSCrossRefGoogle Scholar
  70. 69.
    S. B. Woods (Private Communications)Google Scholar

Copyright information

© Plenum Press, New York 1977

Authors and Affiliations

  • B. L. Gyorffy
    • 1
  • G. M. Stocks
    • 1
  1. 1.H. H. Wills Physics Laboratory, Royal FortUniversity of BristolBristolUK

Personalised recommendations