NMR in Metals and Alloys

  • H. Alloul
Part of the NATO Advanced Study Institutes Series book series (NSSB, volume 22)


Among the great number of NMR studies which have been performed in the condensed matter, a quite important part has been devoted to investigate the properties of metals and alloys, since the discovery of the Knight shift, which showed that NMR experiments were quite sensitive to the electronic structure of metals. The increasing number of experimental results did quickly raise difficult problems of interpretation as the NMR data required very refined details of the electronic structure, even in simple elemental alkali metals. It became quite evident that results from other experimental techniques such as susceptibility, specific heat, Mossbäuer effect, etc..., as well as developments of some specific theoretical aspects were required in order to achieve some understanding of the NMR properties of more complicated systems such as those involving transition metals. The NMR technique revealed to be even a more powerful tool for investigating compounds or alloys as it permits to study the particular electronic properties of a given constituent, and even allows to distinguish atoms which have a given environment. Finally it should be emphasized that NMR is not only sensitive to static electronic properties through the positions, splittings, widths of the NMR spectra, but also to the dynamic properties of the electronic system through the nuclear spin T1.


Fermi Level Relaxation Rate Nuclear Spin Contact Interaction Electric Field Gradient 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    W.D. KNIGHT, Phys.Rev. 76, 1259 (1949)CrossRefGoogle Scholar
  2. 2.
    N. BLOEMBERGEN and T.J. ROWLAND, Acta Metall. 1, 753 (1953)CrossRefGoogle Scholar
  3. 3.
    A. ABRAGAM, Principles of Nuclear Magnetism, Clarendon, Oxford (1961)Google Scholar
  4. 4.
    C.P. SLICHTER, Principles of Magnetic Resonance, Harper and Row, New York (1963)Google Scholar
  5. 5.
    J. WINTER, Magnetic Resonance in Metals,, Clarendon, Oxford (1971)Google Scholar
  6. 6.
    W.D. KNIGHT, Solid State Physics, ed. F. Seitz and D. Turnbull, 2, Academic, New York (1956)Google Scholar
  7. 7.
    L.E. DRAIN, Met.Rev. 11, 195 (1967)CrossRefGoogle Scholar
  8. 8.
    A. NARATH, Hyperfine interactions, ed. A.J. Freeman and R.B. Frankel, 287, Academic, New York (1967)Google Scholar
  9. 9.
    R.G. BARNES, Magnetic Resonance, ed. C.K. Cougan, N.S. Ham, S.N. Stuart, J.R. Pilbrow and G.V.H. Wilson, 63, Plenum Press, New York (1970)Google Scholar
  10. 10.
    J. KORRINGA, Physica 16, 601 (1950)CrossRefGoogle Scholar
  11. 11.
    D. AILON and C.P. SLICHTER, Phys.Rev. 137, 2995 (1966)Google Scholar
  12. 12.
    R.T. SCHUMACHER and C.P. SLICHTER, Phys.Rev. 101, 58 (1957)CrossRefGoogle Scholar
  13. 13.
    R. HECHT and A.G. REDFIELD, Phys.Rev. 132, 972 (1963)CrossRefGoogle Scholar
  14. 14.
    For more details on the theories for the electron-electron enhancement of x(q, w) see R.W. SHAW and W.W. WARREN, Phys.Rev. B3, 1562 (1971) and references hereinGoogle Scholar
  15. 15.
    V. JACCARINO, Theory of Magnetism in Transition Metals, ed. W. Marshall, Academic Press (1967)Google Scholar
  16. 16.
    A.M. CLOGSTON, V. JACCARINO and Y. YAFET, Phys.Rev. 134, A650 (1964)CrossRefGoogle Scholar
  17. 17.
    J.A. SEITCHIK, A.C. GOSSARD and V. JACCARINO, Phys.Rev. 136, A1119 (1964)CrossRefGoogle Scholar
  18. 18.
    Y. YAFET and V. JACCARINO, Phys.Rev. 133A, 1630 (1964)CrossRefGoogle Scholar
  19. A. NARATH, A.T. FROMHOLD and E.D. JONES, Phys.Rev. 144, 428 (1966)CrossRefGoogle Scholar
  20. 19.
    More details on the non cubic metals can be found in [9]Google Scholar
  21. 20.
    S.N. SHARMA and D.L. WILLIAMS, Phys.Rev.Lett. 25A, 738 (1967)Google Scholar
  22. 21.
    R.V. KASOWSKI and L.M. FALICOV, Phys.Rev.Lett. 22, 1001 (1969)CrossRefGoogle Scholar
  23. 22.
    M.A. RUDERMAN and C. KITTEL, Phys.Rev. 96, 99 (1954)CrossRefGoogle Scholar
  24. 23.
    Yu.S. KARIMOV and I.F. SCHEGOLEV, Soviet Phys.JETP 14, 772 (1962)Google Scholar
  25. 24.
    S.N. SHARMA, D.L. WILLIAMS and H.E. SCHONE, Phys.Rev. 188, 662 (1969)CrossRefGoogle Scholar
  26. 25.
    J. BUTTET, private communicationGoogle Scholar
  27. 26.
    J. POITRENAUD, JPCS 28, 161 (1967)Google Scholar
  28. 27.
    H. ALLOUL and C. FROIDEVAUX, Phys.Rev. 163, 324 (1967)CrossRefGoogle Scholar
  29. H. ALLOUL and R. DELTOUR, Phys.Rev. 183, 414 (1969)CrossRefGoogle Scholar
  30. 28.
    S.D. MAHANTI and T.P. DAS, Phys.Rev. 170, 426 (1968)CrossRefGoogle Scholar
  31. L. TERLIKKIS, S.D. MAHANTI and T.P.DAS, Phys.Rev.Lett. 21, 1796 (1968)CrossRefGoogle Scholar
  32. 29.
    H. ALLOUL and P. BERNIER, Ann.Physique 8, 169 (1973–74)Google Scholar
  33. 30.
    A. NARATH, Crit.Rev. in Solid State Sciences 3, 1 (1972)Google Scholar
  34. 31.
    D.C. GOLIBERSUCH and A.J. HEEGER, Phys.Rev. 182, 584 (1969)CrossRefGoogle Scholar
  35. 32.
    R.E. WALSTEDT and W.W. WARREN, Phys.Rev.Lett. 31, 365 (1973)CrossRefGoogle Scholar
  36. 33.
    H. ALLOUL, J.Phys.F(Metals), to be published (1974)Google Scholar
  37. 34.
    R.E. WALSTEDT and L.R. WALKER, Phys.Rev. B9, 4857 (1974)CrossRefGoogle Scholar
  38. 35.
    H. ALLOUL, J. DARVILLE and P. BERNIER, J.Phys.F(Metals), to be published (1974)Google Scholar
  39. 36.
    N. KARNEZOS and J.A. GARDNER, Phys.Rev. B9, 3106 (1974)CrossRefGoogle Scholar
  40. 37.
    P. BERNIER and H. ALLOUL, J.Phys.F(Metals) 3, 869 (1973)CrossRefGoogle Scholar
  41. 38.
    H. ALLOUL and P. BERNIER, Ibid. 4, 870 (1974)Google Scholar
  42. 39.
    H. ALLOUL, P. BERNIER, H. LAUNOIS and J.P. POUGET, J.Phys.Soc. Japan 30, 101 (1971)CrossRefGoogle Scholar
  43. 40.
    J.B. BOYCE and C.P. SLICHTER, Phys.Rev.Lett. 32, 61 (1974)CrossRefGoogle Scholar
  44. 41.
    J.L. THOLENCE and R. TOURNIER, Phys.Rev.Lett. 25; 867 (1970)CrossRefGoogle Scholar
  45. 42.
    J. FRIEDEL, Phil.Mag. 43, 153 (1952)Google Scholar
  46. 43.
    T.J. ROWLAND, Phys.Rev. 125, 459 (1962)CrossRefGoogle Scholar
  47. 44.
    T.J. ROWLAND, Phys.Rev. 119, 900 (1960)CrossRefGoogle Scholar
  48. 45.
    G. GRÜNER, C. HARGITAI, Phys. Rev. Lett. 26, 772 (1970)CrossRefGoogle Scholar
  49. 46.
    A.G. REDFIELD, Phys.Rev. 130, 589, (1963)CrossRefGoogle Scholar
  50. 47.
    M. MINIER, Phys.Rev. 182, 437 (1969)CrossRefGoogle Scholar
  51. 48.
    G. GRÜNER, Solid State.Commun. 10, 1039 (1972)CrossRefGoogle Scholar
  52. 49.
    C. BERTHIER and M. MINIER, J.Phys.F (Metals) 3, 1169 (1973)CrossRefGoogle Scholar
  53. 50.
    W.W. WARREN, Proceedings of Twin Symposia on Charge Transfer in Alloys and Electronic Structure of Alloys, Philadelphia (1973)Google Scholar
  54. 51.
    J.P. PERDEW and J.W. WILKINS, Phys.Rev. B7, 2461 (1973)CrossRefGoogle Scholar
  55. 52.
    A. NARATH, Phys.Rev. 163, 232 (1967)CrossRefGoogle Scholar
  56. 53.
    C. FROIDEVAUX, F. GAUTIER and I. WEISMAN, Proceedings of the International Conf. on Magnetism, Nottingham, 390 (1964)Google Scholar
  57. 54.
    J. BUTTERWORTH, Proc.Phys.Soc. 83, 71 (1964)CrossRefGoogle Scholar
  58. 55.
    A. NARATH and H.T. WEAVER, Phys.Rev. B3, 616 (1971)CrossRefGoogle Scholar
  59. 56.
    C. FROIDEVAUX, H. LAUNOIS and F. GAUTIER, Solid State Commun. 6, 261 (1968)CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1977

Authors and Affiliations

  • H. Alloul
    • 1
  1. 1.Université Paris SudCentre d’OrsayFrance

Personalised recommendations