Fabrication of Josephson Junctions

  • B. T. Ulrich
  • T. Van Duzer
Part of the NATO Advanced Study Institutes Series book series (NSSB, volume 21)


This paper discusses the materials and microcircuit-fabrication techniques that can be applied to Josephson junctions. All practical applications of Josephson junctions require reproducibility in fabrication and physical ruggedness to withstand the stresses imposed by thermally cycling a structure containing materials with different expansion coefficients. In addition, the various applications require different electrical characteristics. For example, junctions for use in SQUID magnetometers and high-frequency electromagnetic detectors and mixers must have non-hysteretic I-V characteristics, while those for most switching circuits should have hysteretic characteristics. In most applications, the ratio of critical current to capacitance (Ic/C) of the junction should be as large as possible. The choice of materials plays a key role in achieving these ends. Also, achievement of the optimum junction properties requires using sophisticated microfabrication techniques such as photo- and electron-lithography, advanced sputtering techniques, and silicon doping and etching.


Josephson Junction Tunnel Junction Tunneling Barrier Niobium Oxide Barrier Junction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P. W. Anderson and J. M. Rowell, Phys. Rev. Lett. 10, 230 (1963).CrossRefGoogle Scholar
  2. 2.
    L. V. Gregor, Proc. IEEE 59, 1390(1971).CrossRefGoogle Scholar
  3. 3.
    R. F. Herzog, J. E. Greeneich, T. E. Everhart, and T. Van Duzer, IEEE Trans. Electron Devices ED-19, 635 (1972)CrossRefGoogle Scholar
  4. 3a.
    F. Auracher and T. Van Duzer, Rev. Phys. Appl. 9, 233 (1974).CrossRefGoogle Scholar
  5. 4.
    L. Maissel, Chapter 4 of Handbook of Thin-Film Technology, McGraw-Hill, New York, 1970.Google Scholar
  6. 5.
    C. A. Neugebauer and R. A. Ekvall, J. Appl. Phys. 35, 547 (1964).CrossRefGoogle Scholar
  7. 6.
    T. F. Finnegan, private communication.Google Scholar
  8. 7.
    A. Emmanuel, G. B. Donaldson, W. T. Band, and E. Dew-Hughes, IEEE Trans. Magn. MAG-11, 763 (1975).CrossRefGoogle Scholar
  9. 8.
    W. Anacker, K. R. Grebe, J. H. Greiner, S. K. Lahiri, K. C. Park, and H. H. Zappe, U.S. Patent No. 3,733,526, May 15, 1973, “Lead Alloy Josephson Junctions”.Google Scholar
  10. 9.
    J. M. Eldridge and J. Matisoo, U.S. Patent No. 3,816,173, June 11, 1974, “Fabrication of Variable Current Density Josephson Junctions”.Google Scholar
  11. 10.
    C. Y. Fu and T. Van Duzer, Bulletin Amer. Phys. Soc., Series II, 21, 339 (1976).Google Scholar
  12. 11.
    J. W. Rutter and K. T. Aust, Trans. Metallur. Soc. AIME 218, 682 (1960).Google Scholar
  13. 12.
    I. Ames, U.S. Patent No. 3,852,795, December 3, 1974, “Josephson Tunneling Circuits with Superoonducting Contacts”. S. K. Lahiri, J. Vac. Sci. Technol. 13, 148 (1976).CrossRefGoogle Scholar
  14. 13.
    J. Sosniak and G. W. Hull, Jr., J. Appl. Phys. 38, 4390 (1967).CrossRefGoogle Scholar
  15. 14.
    S. Owen and J. E. Nordman, IEEE Trans. Magn. MAG-11, 774(1975).CrossRefGoogle Scholar
  16. 15.
    H. C. Theuerer and J. J. Hauser, J. Appl. Phys. 35, 554 (1964).CrossRefGoogle Scholar
  17. 16.
    J. E. Nordman, J. Appl. Phys. 40, 2111 (1969).CrossRefGoogle Scholar
  18. 17.
    P. K. Hansma, J. Appl. Phys. 45, 1472 (1974).CrossRefGoogle Scholar
  19. 18.
    G. Hawkins and J. Clarke, J. Appl. Phys. 47, 1616 (1976).CrossRefGoogle Scholar
  20. 19.
    K. Schwidtal and R. D. Finnegan, Proceedings of 1972 Applied Superconductivity Conference, Annapolis, Md., May 1–3, p. 562, IEEE Pub. No. 72CH0682–5-TABSC.Google Scholar
  21. 20.
    J. L. Miles and P. H. Smith, J. Electrochem. Soc. 110, 1240 (1963).CrossRefGoogle Scholar
  22. 21.
    J. H. Greiner, J. Appl. Phys. 45, 32 (1974).CrossRefGoogle Scholar
  23. 22.
    P. Cardinne, J. Nordman and M. Renard, Rev. Phys. Appl. 9, 167 (1974).CrossRefGoogle Scholar
  24. 23.
    J. Seto and T. Van Duzer, Appl. Phys. Lett. 19, 488 (1971).CrossRefGoogle Scholar
  25. 24.
    C. L. Huang and T. Van Duzer, IEEE Trans. Mag. MAG-11, 766 (1975)CrossRefGoogle Scholar
  26. 24a.
    C. L. Huang and T. Van Duzer, Appl. Phys. Lett. 25, 753 (1974).CrossRefGoogle Scholar
  27. 25.
    C. L. Huang and T. Van Duzer, IEEE Trans. Electr. Dev. ED-23, 579 (1976).CrossRefGoogle Scholar
  28. 26.
    H. W. Notarys, J. E. Mercereau, J. Appl. Phys. 44, 1821 (1973), and U.S. Patent 3, 798, 511, March 19, 1974.CrossRefGoogle Scholar
  29. 27.
    E. P. Harris, IEEE Trans, on Magnetics MAG-11, 785 (1975)CrossRefGoogle Scholar
  30. 27a.
    E. P. Harris, E. P. Harris, J. Vac. Sci. Tecnol. 12, 1383(1975).CrossRefGoogle Scholar
  31. 28.
    H. Ohta, M. J. Feldman, P. T. Parrish and R. Y. Chiao, Rev. Phys. Appl. 9, 187 (1974).CrossRefGoogle Scholar
  32. 29.
    M. Schyfter, J. Maah-Sango, N. Raley, R. Ruby, B. T. Ulrich and T. Van Duzer, Proceedings of 1976 Applied Superconductivity Conference — to be published in IEEE Trans. Magnetics.Google Scholar
  33. 30.
    M. Octavio, W. J. Skocpol and M. Tinkham, Proceedings of 1976 Applied Superconductivity Conference — to be published in IEEE Trans. Magnetics.Google Scholar
  34. 31.
    W. J. Skocpol, M. R. Beasley and M. Tinkham, J. Appl. Phys. 45, 4054 (1974).CrossRefGoogle Scholar
  35. 32.
    R. Laibowitz, private communication.Google Scholar
  36. 33.
    P. E. Gregers-Hansen, E. Hendricks, M. T. Levinsen and G. R. Pickett, Phys. Rev. Lett. 31, 524(1973).CrossRefGoogle Scholar
  37. 34.
    J. E. Mooij, C. A. Gorter and J. E. Noordam, Rev. Phys. Appl. 9, 173 (1974).CrossRefGoogle Scholar
  38. 35.
    R. Y. Chiao, M. T. Levinsen, P. T. Parrish, D.W. Deterson, R. P. Plambeck, private communication and to be published.Google Scholar
  39. 36.
    T. M. Klapwijk and J. E. Mooij, IEEE Trans, on Magnetics MAG-11, 858 (1975).CrossRefGoogle Scholar
  40. 37.
    R. Y. Chiao, M. J. Feldman, H. Ohta and P. T. Parrish, Rev. Phys. Appl. 9, 183 (1974).CrossRefGoogle Scholar
  41. 38.
    R. A. Buhrman, J. E. Lukens, S. F. Strait and W. W. Webb, J. Appl. Phys. 42, 4527 (1971)CrossRefGoogle Scholar
  42. 38a.
    H. Tolner, C. D. Andriesse and H. H. A. Schaeffer, Infrared Physics 16, 213 (1976)CrossRefGoogle Scholar
  43. 38b.
    V. A. Kulikov, N. N. Kurdjumov, G. F. Leshchenko, L. V. Matveets, V. V. Migulin and E. S. Soldatov, Rev. Phys. Appl. 9, 293 (1974).CrossRefGoogle Scholar
  44. 39.
    B. T. Ulrich, Rev. Phys. Appl. 9, 111 (1974).CrossRefGoogle Scholar
  45. 40.
    D. G. McDonald, private communication.Google Scholar

Copyright information

© Plenum Press, New York 1977

Authors and Affiliations

  • B. T. Ulrich
    • 1
    • 2
  • T. Van Duzer
    • 1
  1. 1.Department of Electrical Engineering and Computer, Sciences and the Electronics Research LaboratoryUniversity of CaliforniaBerkeleyUSA
  2. 2.Department of PhysicsUniversity of NijmegenNetherlands

Personalised recommendations