Advertisement

Superconducting Quantum Interference Devices for Low Frequency Measurements

  • John Clarke
Part of the NATO Advanced Study Institutes Series book series (NSSB, volume 21)

Abstract

Quantum interference effects between two Josephson tunnel junctions [1] incorporated in a superconducting ring were first observed by Jaklevic et al. [2] in 1964. These workers showed that the critical current of the double junction was an oscillatory function of the magnetic flux threading the ring, the period being the flux quantum, Φo. The implications of this result for instrumentation were quickly realized, and a variety of dc SQUIDS* (Superconducting Quantum Interference Devices) were developed and used. These devices included several designs involving machined pieces of niobium connected with point contact junctions [3–5],and the SLUG [6] (Superconducting Low-Inductance Undulatory Galvanometer), which consisted of a bead of solder frozen onto a niobium wire. In the late 1960’s, the rf SQUID [7–9] appeared. The rf SQUID consists of a single Josephson junction on a superconducting ring, and, presumably because only a single junction is required, has become much more widely used than the dc SQUID. Several commercial versions [10–13] of the rf SQUID, complete with sophisticated readout electronics, are available. Close attention has been paid to the optimum coupling of the rf SQUID to the room temperature electronics. As a result of this research, the present rf SQUIDs have a higher sensitivity than the first generation of dc SQUIDs.

Keywords

Tunnel Junction Superconducting Quantum Interference Device Noise Power Spectrum Tank Circuit Helium Bath 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    B.D. Josephson, Phys. Lett. 1, 251 (1962);CrossRefGoogle Scholar
  2. 1a.
    B.D. Josephson, Adv. Phys. 14, 419 (1965).CrossRefGoogle Scholar
  3. 2.
    R.C. Jaklevic, J. Lambe, A.H. Silver, and J.E. Mercereau, Phys. Rev. Lett. 12, 159(1964).CrossRefGoogle Scholar
  4. 3.
    J.E. Zimmerman and A.H. Silver, Phys. Rev. 141, 367 (1966).CrossRefGoogle Scholar
  5. 4.
    M.R. Beasley and W.W. Webb, Proc. Symp. Physics of Superconducting Devices (University of Virginia, Charlottesville, April 28–29, 1967), V. 1.Google Scholar
  6. 5.
    P.L. Forgacs and A. Warnick, Rev. Sci. Instum. 38, 214 (1967).CrossRefGoogle Scholar
  7. 6.
    J. Clarke, Phil. Mag. 13, 115 (1966).CrossRefGoogle Scholar
  8. 7.
    J.E. Zimmerman, P. Thiene, and J.T. Harding, J. Appl. Phys. 41, 1572 (1970).CrossRefGoogle Scholar
  9. 8.
    J.E. Mercereau, Rev. Phys. Appl. 5, 13 (1970);CrossRefGoogle Scholar
  10. 8a.
    M. Nisenoff, Rev. Phys. Appl. 5, 21 (1970).CrossRefGoogle Scholar
  11. 9.
    R.P. Giffard, R.A. Webb, and J.C. Weatley, J. Low Temp. Phys. 6, 533 (1972).CrossRefGoogle Scholar
  12. 10.
    Develco, Inc., Mountain View, CA.Google Scholar
  13. 11.
    Instruments for Technology, Helsinki, Finland.Google Scholar
  14. 12.
    S.C.T., Inc., Mountain View, CA.Google Scholar
  15. 13.
    S.H.E. Corp., San Diego, CA.Google Scholar
  16. 14.
    John Clarke, Wolfgang M. Goubau, and Mark B. Ketchen, J. Low Temp. Phys. 25, 99 (1976).CrossRefGoogle Scholar
  17. 15.
    John Clarke, IEEE 61, 8 (1973).CrossRefGoogle Scholar
  18. 16.
    J. Bardeen, L.N. Cooper, and J.R. Schrieffer, Phys. Rev. 108, 1175 (1957).CrossRefGoogle Scholar
  19. 17.
    F. London, SuperfLuids (Wiley, NY, 1950).Google Scholar
  20. 18.
    B.S. Deaver and W.M. Fairbank, Phys. Rev. Lett. 7, 43 (1961);CrossRefGoogle Scholar
  21. 18a.
    R. Doll and M. Näbauer, Phys. Rev. Lett. 7, 51 (1961).CrossRefGoogle Scholar
  22. 19.
    P.W. Anderson in Lectures on the Many Body Problem, Caianiello, ed. (Academic Press. NY, 1964), Vol. 2, p. 113.Google Scholar
  23. 20.
    P.W. Anderson and J.M. Rowell, Phys. Rev. Lett. 10, 230 (1962).CrossRefGoogle Scholar
  24. 21.
    W. Schroen, J. Appl. Phys. 39, 2671 (1968).CrossRefGoogle Scholar
  25. 22.
    J.H. Greiner, J. Appl. Phys. 42, 5151 (1972);CrossRefGoogle Scholar
  26. 22a.
    J.H. Greiner, ibid. 45, 32 (1974).CrossRefGoogle Scholar
  27. 23.
    J.H. Greiner, S. Basavaiah, and I. Ames, J. Vac. Sci. and Tech. 11, 81 (1974).CrossRefGoogle Scholar
  28. 24.
    S. Basavaiah, J.M. Eldridge, and J. Matisoo, J. Appl. Phys. 45, 457 (1974).CrossRefGoogle Scholar
  29. 25.
    J.E. Nordman, J. Appl. Phys. 40, 2111 (1969);CrossRefGoogle Scholar
  30. 25a.
    J.E. Nordman and W.H. Keller, Phys. Lett. A36, 52 (1971);Google Scholar
  31. 25b.
    L.O. Mullen and D.B. Sullivan, J. Appl. Phys. 40, 2115 (1969);CrossRefGoogle Scholar
  32. 25c.
    R. Graeffe and T. Wilk, J. Appl. Phys. 42, 2146 (1971);CrossRefGoogle Scholar
  33. 25d.
    K. Schwidtal, J. Appl. Phys. 43, 202 (1972);CrossRefGoogle Scholar
  34. 25e.
    P.K. Hansma, J. Appl. Phys. 45, 1472 (1974);CrossRefGoogle Scholar
  35. 25f.
    S. Owen and J.E. Nordman, IEEE Trans. Magn. MAG-11, 774 (1975).CrossRefGoogle Scholar
  36. 26.
    R.F. Broom, R. Jaggi, R.B. Laibowitz, Th.O. Mohr, and W. Walter, Proc. LT14, Helsinki, Finland (1975), p. 172;Google Scholar
  37. 26a.
    Gilbert Hawkins and John Clarke, J. Appl. Phys. 47, 1616 (1976).CrossRefGoogle Scholar
  38. 27.
    K.E. Drangeid, R.F. Broom, W. Jutzi, Th.O. Mohr, A. Moser and G. Sasso, Intl. Solid-State Circuits Conf. Digest, 68–69 (1971); K. Grebe, I. Ames and A. Ginzberg, J. Vac. Sci. Tech. 458 (1974).Google Scholar
  39. 28.
    W.C. Stewart, Appl. Phys. Lett. 12, 277 (1968);CrossRefGoogle Scholar
  40. 28a.
    D.E. McCumber, J. Appl. Phys. 39, 3113 (1968).CrossRefGoogle Scholar
  41. 29.
    P.K. Hansma, G.I. Rochlin, and J.N. Sweet, Phys. Rev. B4, 3003 (1971).Google Scholar
  42. 30.
    P.W. Anderson and A.H. Dayem, Phys. Rev. Lett. 13, 195 (1964).CrossRefGoogle Scholar
  43. 31.
    H.A. Notarys, R.H. Wang, and J.E. Mercereau, Proc. IEEE 61, 79 (1973).CrossRefGoogle Scholar
  44. 32.
    R.B. Laibowitz, Appl. Phys. Lett. 23, 407 (1973).CrossRefGoogle Scholar
  45. 33.
    P. Crozat, S. Gourrier, D. Bouchon, and R. Adde, Proc. Fourteenth Intern. Conf. on Low Temperature Physics, Otaniemi, Finland, August 14–20, 1975, Matti Krusius and Matti Vuorio, eds. (North-Holland, American Elsevier, 1975), Vol. 4, p. 206.Google Scholar
  46. 34.
    F. CoLSidori, A.A. Fife, R.F. Frindt, and S. Gygax, Appl. Phys. Lett. 18, 233 (1971).CrossRefGoogle Scholar
  47. 35.
    M.A. Janocko, J.R. Gavaler, and C.K. Jones, IEEE Trans. Magn. MAG-11, 880 (1975); R.B. Laibowitz, C. C. Tsuei, J.C. Cuomo, J.F. Ziegler, and M. Hatzakis, ibid., p. 883.CrossRefGoogle Scholar
  48. 36.
    J.E. Zimmerman and A.H. Silver, Phys. Rev. 141, 367 (1966).CrossRefGoogle Scholar
  49. 37.
    J.E. Zimmerman, Proc. 1972 Applied Superconductivity Conf., Annapolis, Maryland (IEEE, NY, 1972), p. 544.Google Scholar
  50. 38.
    R.A. Buhrman, S.F. Strait, and W.W. Webb, J. Appl. Phys. 42, 4527 (1971).CrossRefGoogle Scholar
  51. 39.
    A. Baratoff, J.A. Blackburn, and B.B. Schwartz, Phys. Rev. Lett. 25, 1096 (1970).CrossRefGoogle Scholar
  52. 40.
    L.D. Jackel and R.A. Buhrman, J. Low Temp. Phys. 19, 201 (1975).CrossRefGoogle Scholar
  53. 41.
    A.Th.A.M. De Waele and R. De Bruyn Ouboter, Physica 41, 225 (1969).CrossRefGoogle Scholar
  54. 42.
    M. Tinkham Introduction to Superconductivity (McGraw-Hill, 1975), p. 214.Google Scholar
  55. 43.
    Claudia D. Tesche and John Clarke, Proceedings of the Applied Superconductivity Conference, Stanford, August 1976, in press.Google Scholar
  56. 44.
    Y.H. Ivanchenko and L.A. Zil’berman, Zh. Eksperim, I. Teor. Fiz. 55, 2395 (1968) (Sov. Phys. J.E.T.P. 28, 1272 (1969)).Google Scholar
  57. 45.
    V. Ambegaokar and B.I. Halperin, Phys. Rev. Lett. 22, 1364 (1969).CrossRefGoogle Scholar
  58. 46.
    A.N. Vystavkin, V.N. Gubankov, L.S. Kuzmin, K.I. Likharev, V.V. Migulin, and V.K. Semenov, Phys. Rev. Appl. 9, 79 (1974).CrossRefGoogle Scholar
  59. 47.
    CM. Falco, W.H. Parker, S.E. Trullinger, and P.K. Hansma, Phys. Rev. B10, 1865 (1974).Google Scholar
  60. 48.
    K.K. Likharev and V.K. Semenov, J.E.T.P. Lett, 15, 442 (1972).Google Scholar
  61. 49.
    V.R. Radhakrishnan and V.L. Newhouse, J. Appl. Phys. 42, 129 (1971).CrossRefGoogle Scholar
  62. 50.
    J.E. Zimmerman, J. Appl. Phys. 42, 4483 (1971).CrossRefGoogle Scholar
  63. 51.
    J.M. Pierce, J.E. Opfer, and L.H. Rorden, IEEE Trans. Magn. MAG-10, 599 (1974).CrossRefGoogle Scholar
  64. 52.
    A. Davidson, R.S. Newbower, and M.R. Beasley, Rev. Sci. Instrum. 45, 838 (1974).CrossRefGoogle Scholar
  65. 53.
    J.H. Claassen, J. Appl. Phys. 46, 2268 (1975).CrossRefGoogle Scholar
  66. 54.
    S.K. Decker and J.E. Mercereau, Appl. Phys. Lett. 25, 527 (1974).CrossRefGoogle Scholar
  67. 55.
    D.W. Palmer, H.A. Notarys, and J.E. Mercereau, Appl. Phys. Lett. 25, 527 (1974).CrossRefGoogle Scholar
  68. 56.
    W. Richter and G. Albrecht, Cryogenics 15, 148 (1975).CrossRefGoogle Scholar
  69. 57.
    J. Clarke and Gilbert A. Hawkins, IEEE Trans. Magn. MAG-11, 724 (1975); Phys. Rev. B., October 1, 1976.CrossRefGoogle Scholar
  70. 58.
    John Clarke and Richard F. Voss, Phys. Rev. Lett. 33, 24 (1974);CrossRefGoogle Scholar
  71. 58a.
    Richard F. Voss and John Qarke, Phys. Rev. B13, 556 (1976).Google Scholar
  72. 59.
    W.W. Webb, IEEE Trans. Magn. MAG-8, 51 (1972).CrossRefGoogle Scholar
  73. 60.
    See C. Kittel, Introduction to Solid State Physics (Wiley, NY, London, Sydney, Toronto, 1971), Edition IV, Appendix J.Google Scholar
  74. 61.
    P.K. Hansma, J. Appl. Phys. 44, 4191 (1973).CrossRefGoogle Scholar
  75. 62.
    J. Kurkijärvi, Phys. Rev. B6, 832 (1972).Google Scholar
  76. 63.
    L.D. Jackel, J. Kurkijärvi, J.E. Lukens, and W.W. Webb in the 13th Intern. Conf. Low Temp. Phys., Boulder 1972 (Plenum Press, NY, 1974), Vol. 3, p. 705.Google Scholar
  77. 64.
    L.D. Jackel, W.W. Webb, J.E. Lukens, and S.S. Pel, Phys. Rev. B9, 115 (1974).Google Scholar
  78. 65.
    J. Kurkijärvi and W.W. Webb, Proc. Appl. Superconductivity Conf. Annapolis (IEEE, NY, 1972), p. 581.Google Scholar
  79. 66.
    J. Kurkijärvi, J. Appl. Phys. 44, 3729 (1973).CrossRefGoogle Scholar
  80. 67.
    W.L. Goodman, V.W. Hesterman, L.H. Rorden, and W.S. Goree, Proc. IEEE 61, 20 (1973).CrossRefGoogle Scholar
  81. 68.
    J.E. Opfer, Y.K. Yeo, J.M. Pierce, and L.H. Rorden, IEEE Trans. Magn. MAG-10, 536 (1974).CrossRefGoogle Scholar
  82. 69.
    N.V. Zavaritskii and M.S. Legkostupov, Cryogenics 14, 42 (1974).CrossRefGoogle Scholar
  83. 70.
    G.J. Ehnholm, J.K. Soini, and T. Wiik, Proc. of the Fourteenth Intern. Conf. on Low Temperature Physics, Otaniemi, Finland, August 14–20, 1975, Matti Drusius and Matti Vuorio, eds. (North-Holland/American Elsevier, 1975), Vol. 4, p. 234.Google Scholar
  84. 71.
    R. Rifkinand B.S. Deaver, Phys. Rev. B13, 3894 (1976).Google Scholar
  85. 72.
    J.E. Zimmerman, J. Appl. Phys. 42, 4483 (1971).CrossRefGoogle Scholar
  86. 73.
    J.E. Zimmerman, Cryogenics 12, 19(1972).CrossRefGoogle Scholar
  87. 74.
    I am grateful to S. C.T. and S.H.E. for their collaboration in these measurements.Google Scholar
  88. 75.
    J.E. Zimmerman and N.V. Frederick, Appl. Phys. Lett. 19, 16 (1971).CrossRefGoogle Scholar
  89. 76.
    R.A. Kamper and M.B. Simmonds, Appl. Phys. Lett. 20, 270 (1972).CrossRefGoogle Scholar
  90. 77.
    T.D. Dark and L.D. Jackel, Rev. Sci. Instrum. 46, 1249(1975).CrossRefGoogle Scholar
  91. 78.
    J.M. Pierce, J. E. Opfer, and L.H. Rorden, IEEE Trans. Magn. MAG-10, 599 (1974).CrossRefGoogle Scholar
  92. 79.
    M.R. Gaerttner, (unpublished—reported at Int. Mag. Conf., Toronto, 1974).Google Scholar
  93. 80.
    R.A. Webb, R.P. Giffard, and J.C. WheatLey, J. Low Temp. Phys. 13, 383 (1973).CrossRefGoogle Scholar
  94. 81.
    D. Brenner, S.J. Williamson, and L. Kaufman, Proc. of the Fourteenth Intern. Conf. on Low Temp. Phys., Otaniemi, Finland, August 14–20, 1975, Matti Drusius and Matti Vuorio, eds. (North-Holland /American Elsevier, 1975), Vol. 4, p. 266.Google Scholar
  95. 82.
    Mark B. Ketchen, Wolfgang M. Goubau, John Clarke, and Gordon B. Donaldson, Proc. of the Applied Superconductivity Conf., Stanford, CA, Augast 17–20, 1976 (to be published).Google Scholar
  96. 83.
    E.C. Hirschkoff, O.G. Symko, and J.C. WheatLey, J. Low Temp. Phys. 4, 111 (1971).CrossRefGoogle Scholar
  97. 84.
    J.G. Doran and O.G. Symko, IEEE Trans. Magn. MAG-10, 603 (1974).CrossRefGoogle Scholar
  98. 85.
    E.J. Cukauskas, D.A. Vincent, and B.S. Deaver, Jr., Rev. Sci. Instrum. 45, 1 (1974).CrossRefGoogle Scholar
  99. 86.
    M. Cerdonio and C. Messana, IEEE Trans. Magn. MAG-11, 728 (1975).CrossRefGoogle Scholar
  100. 87.
    For recent improvements in vibrating sample magnetometers and a comprehensive bibliography see S. Foner, Rev. Sci. Instrum. 46, 1425 (1975).CrossRefGoogle Scholar
  101. 88.
    Oxford Instruments, England.Google Scholar
  102. 89.
    J. Clarke, W.E. Tennant, and D. Woody, J. Appl. Phys. 42, 3859 (1971).CrossRefGoogle Scholar
  103. 90.
    For example, Princeton Applied Research Model 185.Google Scholar
  104. 91.
    D.E. Prober, Rev. Sci. Instrum. 45, 848 (1974).CrossRefGoogle Scholar
  105. 92.
    W.M. Goubau, T.D. Gamble, J. Clarke, H.F. Morrison, and E.C. Mosley (unpublished).Google Scholar
  106. 93.
    M. Johnston (private communication).Google Scholar
  107. 94.
    D. Cohen, Physics Today, August 1975, p. 34;Google Scholar
  108. 94a.
    D. Cohen, IEEE Trans. Magn. MAG-11, 694 (1975).CrossRefGoogle Scholar
  109. 95.
    D. Cohen, E.A. Edelsack, and J.E. Zimmerman, Appl. Phys. Lett. 16, 278 (1970).CrossRefGoogle Scholar
  110. 96.
    J.E. Zimmerman and N.V. Frederick, Appl. Phys. Lett. 19, 16 (1971).CrossRefGoogle Scholar
  111. 97.
    J. Ahopelto, P.J. Karp, T. E. Katila, R. Lukanda, and P. Mäkipää, Proc. of the Fourteenth Intern. Conf. on Low Temp. Phys., Matti Krusius and Matti Vuorio, eds. (North-Holland/ American Elsevier, 1975), Vol. 4, p. 202.Google Scholar
  112. 98.
    D. Cohen, Science 175, 664 (1972).CrossRefGoogle Scholar
  113. 99.
    W.M. Wynn, C.P. Frahm, P.J. Carroll, R.H. Clark, J. Wellhoner, and M.J. Wynn, IEEE Trans. Magn. MAG-11, 701 (1975).CrossRefGoogle Scholar
  114. 100.
    E.C. Hirschkoff, O.G. Symko, and J.C. Wheatley, J. Low Temp. Phys. 5, 155 (1971).CrossRefGoogle Scholar
  115. 101.
    E.C. Hirschkoff, O.G. Symko, L.L. Vant-Hall, and J.C. Wheatley, J. Low Temp. Phys. 2, 653 (1970).CrossRefGoogle Scholar
  116. 102.
    J.M. Goodkind and D.L. Stolfa, Rev. Sci. Instrum. 41, 799 (1970).CrossRefGoogle Scholar
  117. 103.
    H.E. Hoenig, R.H. Wang, G.R. Rossman, and J.E. Mercereau, in Proceedings of the 1972 Applied Superconductivity Conference (Annapolis, Maryland) (IEEE, NY, 1972), p. 570.Google Scholar
  118. 104.
    J.P. Gollub, M.R. Beasley, R.S. Newbower, and M. Tinkham, Phys. Rev. Lett. 22, 1288 (1969).CrossRefGoogle Scholar
  119. 105.
    J.E. Lukens, R.J. Warburton, and W.W. Webb, Phys. Rev. Lett. 25, 1180 (1970).CrossRefGoogle Scholar
  120. 106.
    E. Rumbo, Phil. Mag. 19, 689 (1969).CrossRefGoogle Scholar
  121. 107.
    M. Wade, Phil. Mag. 20, 1107 (1969).CrossRefGoogle Scholar
  122. 108.
    M.R. Beasley, R. Labusch, and W.W. Webb, Phys. Rev. 181, 682 (1969).CrossRefGoogle Scholar
  123. 109.
    J. Clarke, Proc. Roy. Soc. A308, 447 (1969).Google Scholar
  124. 110.
    A.B. Pippard, J.G. Shepherd, and D.A. Tindall, Proc. Roy. Soc. A324, 17 (1971).Google Scholar
  125. 111.
    J. Clarke, Phys. Rev. Lett. 21, 1566 (1968).CrossRefGoogle Scholar
  126. 112.
    J. Qarke, Phys. Rev. Lett. 28, 1363 (1972);CrossRefGoogle Scholar
  127. 112a.
    J. Clarke and J.L. Paterson, J. Low Temp. Phys. 15, 491 (1974).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1977

Authors and Affiliations

  • John Clarke
    • 1
    • 2
  1. 1.Department of PhysicsUniversity of CaliforniaBerkeleyUSA
  2. 2.Materials and Molecular Research DivisionLawrence Berkeley LaboratoryBerkeleyUSA

Personalised recommendations