Advertisement

Large-Scale Applications of Superconductivity

  • G. Bogner
Part of the NATO Advanced Study Institutes Series book series (NSSB, volume 21)

Abstract

Research and development in the field of applied superconductivity-has been carried out for more than 15 years. Many large scale applications have been proposed in this period, but until now superconductivity has found access only to a few areas which in addition are not part of classical electrical engineering, e.g. magnets for scientific research or High Energy Physics. On the one hand, this fact is not very satisfying for physicists and engineers who are aware of the great principal potential of superconductivity and are working strenuously in this field. On the other hand, this situation can be simply explained and there is no reason to sink into despair. Without any doubt superconductivity will lead to unconventional solutions to problems in classical power engineering and to new solutions to problems which are impossible by means of conventional electrical engineering. The question as to when this application will occur, however, remains a difficult one to answer.

Keywords

Superconducting Magnetic Energy Storage Electromagnetic Shield Armature Reaction Linear Synchronous Motor Linear Induction Motor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. Brechna, Superconducting Magnet Systems, Springer Verlag, Berlin-Heidelberg-New York, 1973.CrossRefGoogle Scholar
  2. 2.
    The JET-Project, EUT-JET-R7, August 1975, published by the Commission of the European Communities, Brüssel, or: B.J. Green, Europhysics News 6, 6 (1975).Google Scholar
  3. 3.
    H. Brechna, Superconducting Machines and Devices, Large Systems Applications, Nato Advanced Study Institutes Series 1, Plenum Press, New York and London, 139 (1974).Google Scholar
  4. 4.
    S. Foner et al., Phys. Letters 31A, 349(1970).Google Scholar
  5. 5.
    S. Foner et al., Phys. Letters 47A, 485 (1974).Google Scholar
  6. 6.
    J.R. Gavaier et al., IEEE Transactions on Magnetics MAG 11, 192 (1975).CrossRefGoogle Scholar
  7. 7.
    O. Fischer, Europhysics News 7, 1 (1976).Google Scholar
  8. 8.
    O. Fischer, VIth Int. Cryogenic Eng. Conf., Paper No, IP4, Grenoble, 11–14 May 1976.Google Scholar
  9. 9.
    S. Foner and E.J. McNiff, Phys. Letters 45A, 429 (1973).Google Scholar
  10. 10.
    M.N. Wilson et al., J. of Phys. D (Appl. Phys.) 3, 1517 (1970).CrossRefGoogle Scholar
  11. 11.
    I. Pfeiffer and H. Hillmann, Acta Met. 16, 1429 (1968).CrossRefGoogle Scholar
  12. 12.
    M. Suenaga et al., IEEE Transactions on Magnetics MAG II, 231 (1975).CrossRefGoogle Scholar
  13. 13.
    H. Hillmann and E. Springer, Siemens Zeitschrift 49, 739 (1975).Google Scholar
  14. 14.
    E. Gregory, J. of Appl. Polymer Science: Symposium 29, 1 (1976).Google Scholar
  15. 15.
    K. Tachikawa et al., IEEE Transactions on Magnetics MAG 11, 240 (1975).CrossRefGoogle Scholar
  16. 16.
    H. Kuckuck et al., Cryogenics 16, 350 (1976), and G. Ziegler et al., Deutsche Phys. Gesellschaft, Frühjahrstagung, Freudenstadt, 5–9 April 1976.CrossRefGoogle Scholar
  17. 17.
    Y. Iwasa, IEEE Transactions on Magnetics MAG 11, 266 (1975).CrossRefGoogle Scholar
  18. 18.
    D.C. Larbalestier et al., VIth Int. Cryogenic Eng. Conf., Paper No. K4, Grenoble, 11–14 May 1976.Google Scholar
  19. 19.
    G. Ries and K.P. Jüngst, to be published in Cryogenics, 1976.Google Scholar
  20. 20.
    K. Boening et al., Phys. Stat. Solidi 34, 395 (1969).CrossRefGoogle Scholar
  21. 21.
    M. Söll et al., Journal of Low Temperature Physics 24, 631 (1976).CrossRefGoogle Scholar
  22. 22.
    E. Seibt, IEEE Transactions on Magnetics MAG 11, 174 (1975).CrossRefGoogle Scholar
  23. 23.
    M. Söll et al., IEEE Transactions on Magnetics, MAG 11, 178 (1975).CrossRefGoogle Scholar
  24. 24.
    D.M. Parkin and A.R. Sweedler, IEEE Transactions on Magnetics MAG 11, 166 (1975).CrossRefGoogle Scholar
  25. 25.
    M. Söll et al., 9th Symposium on Fusion Technology, Garmisch-Partenkirchen, 14–18 June 1976.Google Scholar
  26. 26.
    H. Brechna and W. Maurer, Gesellschaft für Kernforschung, Karlsruhe, Report No. 1468, September 1971.Google Scholar
  27. 27.
    P. Turowsky, Proc. Fifth Int. Conf. on Magnet Technology, MT-5, Roma, 541 (1975).Google Scholar
  28. 28.
    P.F. Smith and B. Colyer, Cryogenics 15, 201(1975).Google Scholar
  29. 29.
    D. Evans, Rutherford Laboratory, Chilton, Didcot, England, Rep. No. RL 73–093 (1973).Google Scholar
  30. 30.
    D.S. Easton and C.C. Koch, Cryogenic Eng. Conf., Paper No. J 5, Kingston, Canada, 22–25 July 1975.Google Scholar
  31. 31.
    J.R. Heim, Fermi Nat. Acc. Lab., Batavia, Illinois, Rep. No. TM 334-B (1974).Google Scholar
  32. 32.
    C. Schmidt, Internal Report of IE KP-Karlsruhe, 75 Karlsruhe, Postfach 3640, FRG (1976).Google Scholar
  33. 33.
    F.R. Fickett, Proc. Fifth Int. Conf. on Magnet Technology MT-5, Roma, 659 (1975).Google Scholar
  34. 34.
    G. Vécsey et al., Proc. Fifth Int. Conf. on Magnet Technology, MT-5, Roma, 110 (1975).Google Scholar
  35. 35.
    M. Morpurgo, Particle Accelerators 1, 255 (1970).Google Scholar
  36. 36.
    M.O. Hoenig and D.B. Montgomery, IEEE Transactions on Magnetics MAG 11, 569 (1975).CrossRefGoogle Scholar
  37. 37.
    M.O. Hoenig et al., 6th Int. Cryogenic Eng. Conf., Paper No. 1–9, Grenoble, 11–14 May 1976.Google Scholar
  38. 38.
    The author became acquainted with this type of conductor during a visit to the Kurchatov-Institute, Moscow, in September 1975.Google Scholar
  39. 39.
    M. Morpurgo, Paper presented at the Conf. on Technical Applications of Superconductivity, Alushta, USSR, September 16–19 (1975).Google Scholar
  40. 40.
    M.S. Lubell et al., Plasma Physics and Controlled Nuclear Fusion Research III, IAEA-CN-28/K-10, 433 (1971).Google Scholar
  41. 41.
    “Wisconsin Superconductive Energy Storage Project”, Final Report to NSF, 1 July 1974.Google Scholar
  42. 42.
    J.M. Lock, Cryogenics 9, 438 (1969).Google Scholar
  43. 43.
    IGC-Newsletter 1, No. 2, 1 (1973).Google Scholar
  44. 44.
    The Japan Economic Journal from 9.3.76.Google Scholar
  45. 45.
    H. Pf ister et al., 1976 Applied Superconductivity Conference, Stanford, California, Paper No. W2, 17–20 August 1976.Google Scholar
  46. 46.
    J.P. Zbasnik et al., Cryogenic Engineering Conf., after deadline paper, Kingston, Canada, 22–25 July 1975.Google Scholar
  47. 47.
    P.A. Cheremnykh et al., IEEE Transactions on Magnetics MAG 11, 519 (1975).CrossRefGoogle Scholar
  48. 48.
    M.A. Green, 6th Int. Cryogenic Eng. Conf., Paper No. N-4, Grenoble, 11–14, May 1976.Google Scholar
  49. 49.
    G. Kesseler et al., Proc. Int. Conf. on Magnet Technology MT-3, Hamburg, 768 (1970)Google Scholar
  50. 50.
    W. Heinz, Proc. of the Fifth Int. Conf. on Magnet Technology MT-5, Roma, 14 (1975).Google Scholar
  51. 51.
    W.B. Sampson, Brookhaven Nat. Lab., private communication, June 1976.Google Scholar
  52. 52.
    Institut für Experimentelle Kernphysik, Karlsruhe, 31, Jahresbericht 1975, to be published 1976.Google Scholar
  53. 53.
    J.H. Coupland, Proc. of the 5th Int. Conf. on Magnet Technology MT-5, Roma, 535 (1975).Google Scholar
  54. 54.
    G. Bronca et al., Proc. of the 5th Int. Conf. on Magnet Technology MT-5, Roma, 525 (1975).Google Scholar
  55. 55.
    B.P. Strauss et al., IEEE Transactions on Magnetics MAG-11, 451 (1975).CrossRefGoogle Scholar
  56. 56.
    T. Elioff et al., IEEE Transactions on Magnetics, MAG-11, 447 (1975).CrossRefGoogle Scholar
  57. 57.
    J.R. Purcell et al., IEEE Transactions on Magnetics MAG-11, 455 (1975).CrossRefGoogle Scholar
  58. 58.
    W. Heinz, 6th Int. Cryog. Eng. Conf., Paper No. IP6, Grenoble, 11–14 May 1976.Google Scholar
  59. 59.
    A.P. Fraas, ORNL-TM-3096 (1973), R. Moir and C.E. Taylor, URCL-74326, Lawrence Livermore Laboratory (1972).Google Scholar
  60. 60.
    CD. Henning et al., 8th Int. Conf. of Refrigeration, Int. Inst., Refr. Washington 1971.Google Scholar
  61. 61.
    K.R. Efferson et al., 4th Sympos. on Engin. Problems of Fusion Research, Washington 1971.Google Scholar
  62. 62.
    D.N. Cornish, Culham Lab., Lab. Report No. CLM-P 275, 1 (1971).Google Scholar
  63. 63.
    C.E. Taylor et al., 4th Sympos. on Engin. Problems of Fusion Research, Washington 1971.Google Scholar
  64. 64.
    J.R. Roth et al., Proc. Applied Superconductivity Conference, Annapolis 1972, IEEE Pub. No. 72CH0682–5-TABSC, 361 (1973).Google Scholar
  65. 65.
    G. Bogner, Proc. Appl. Superconductivity Conference, Annapolis 1972, IEEE Pub. No. 72 CH0682–5-TABSC, 214 (1973).Google Scholar
  66. 66.
    Private communication during a visit to the Kurchatoy Institute, Moscow, in September 1975.Google Scholar
  67. 67.
    C.E. Swannack et al., IEEE Transactions on Magnetics MAG 11, 504 (1975).CrossRefGoogle Scholar
  68. 68.
    Private communication during a visit to the Efremov Institute, Leningrad, in September 1975.Google Scholar
  69. 69.
    A. Ulbricht et al., 6th Int. Cryog. Engin. Conf., Paper No. N11, Grenoble, 11–14 May 1976.Google Scholar
  70. 70.
    USEAC Division of CTR, “Fusion Power by Magnetic Confinement”, WASH-1290, UC-20, February 1974.Google Scholar
  71. 71.
    E.J. Ziurys, Proc. of the 5th Int. Conf. on Magnet Technology MT-5, Roma, 296 (1975).Google Scholar
  72. 72.
    C.H. Dustmann et al., 9th Symposium on Fusion Technology, Garmisch-Partenkirchen, Germany, 14–18 June 1976.Google Scholar
  73. 73.
    T. Hiraoka et al., 9th Symposium on Fusion Technology, Garmisch-Partenkirchen, Germany, 14–18 June 1976.Google Scholar
  74. 74.
    J. File, Proc. Fifth Int. Conf. on Magnet Technology MT-5, Roma, 281 (1975).Google Scholar
  75. 75.
    J.B. Heywood and G.J. Womack, Open-Cycle MHD Power Generation (Pergamon Press, 1969).Google Scholar
  76. 76.
    J. Powell, Superconducting Machines and Devices, Large Systems Applications, Nato Advanced Study Institute Series 1 (1974).Google Scholar
  77. 77.
    D.B. Montgomery et al., Proc. 6th Int. Conf. on MHD El Power Generation, Washington, June 1975.Google Scholar
  78. 78.
    Y. Aijama et al., Proc. of the 5th Int. Cryog. Eng. Conf. 1974, Kyoto, 300 (IPC 1975).Google Scholar
  79. 79.
    P. Komarek, Cryogenics 16, 131 (1976).CrossRefGoogle Scholar
  80. 80.
    J.R. Purcell et al., Proc. 6th Int. Conf. on MHD El Power Generation, Washington, June 1975.Google Scholar
  81. 81.
    C Laverick, Applied Superconductivity in the USSR, 31 March 1976.Google Scholar
  82. 82.
    P. Dubois, private communication (1974).Google Scholar
  83. 83.
    R.W. Boom et al., IEEE Transactions on Magnetics MAG 11, 475 (1975).CrossRefGoogle Scholar
  84. 84.
    W.V. Hassenzahl, IEEE Transactions on Magnetics, MAG 11, 482 (1975).CrossRefGoogle Scholar
  85. 85.
    W.V. Hassenzahl, 9th Progress Report on SMES, LA-6225-PR, UC-95b, issued: February 1976.Google Scholar
  86. 86.
    E. Maxwell, Cryogenics 15, 179 (1975).CrossRefGoogle Scholar
  87. 87.
    D. Kelland et al., Superconducting Machines and Devices, Large Systems Applications, Nato Advanced Study Institutes Series 1, Plenum Press, New York-London, 581 (1974).Google Scholar
  88. 88.
    J. A. Oberteuffer, IEEE Transactions on Magnetics MAG 9, 303 (1973).CrossRefGoogle Scholar
  89. 89.
    S.C. Trindade and H. Kolm, IEEE Transactions on Magnetics MAG 9, 310 (1973).CrossRefGoogle Scholar
  90. 90.
    C. de Latour, IEEE Transactions on Magnetics MAG 9, 314 (1973).CrossRefGoogle Scholar
  91. 91.
    C. de Latour and H. Kolm, IEEE Transactions on Magnetics MAG 11, 1570 (1975).CrossRefGoogle Scholar
  92. 92.
    H.H. Kolm, IEEE Transactions on Magnetics MAG 11, 1567 (1975).CrossRefGoogle Scholar
  93. 93.
    Z.J. J. Stekly, IEEE Transactions on Magnetics MAG 11, 1594 (1975).CrossRefGoogle Scholar
  94. 94.
    J.H.P. Watson and D. Hocking, IEEE Transactions on Magnetics MAG 11, 1588 (1975).CrossRefGoogle Scholar
  95. 95.
    P.G. Marston, Proceed. 5th Internat. Conf. on Magnet Technology MT-5, Roma, 424 (1975).Google Scholar
  96. 96.
    R.D. Thornton, IEEE Transactions on Magnetics, MAG 11, 981 (1975).CrossRefGoogle Scholar
  97. 97.
    C. Albrecht, 14th Internat. Congress of Refrigeration, Moscow, 20–30 September 1975.Google Scholar
  98. 98.
    C. Albrecht, ETZ-A 96, 383 (1975).Google Scholar
  99. 99.
    H. Hieronymus, Technical Report Siemens AG, 22.1.1976.Google Scholar
  100. 100.
    J. Gloel and J. Holtz, Siemens Forschungs- und Entwicklungsberichte 5, 85 (1976).Google Scholar
  101. 101.
    C. Albrecht and G. Bohn, to be published in “Physikalische Blätter” (1976).Google Scholar
  102. 102.
    L.C. Davis and R.H. Borcherts, J. Appl. Phys. 44, 3293 (1973).Google Scholar
  103. 103.
    J. Holtz, ETZ-A 96, 365 (1975).Google Scholar
  104. 104.
    Y. Ishizaki et al., Proc. of the 5th Internat. Cryogenic Eng. Conf., Kyoto 102 (1974).Google Scholar
  105. 105.
    G. Bogner, Superconducting Machines and Devices, Large Systems Applications, Nato Advanced Study Institutes Series 1, Plenum Press, 610 (1974).Google Scholar
  106. 106.
    C. Albrecht et al., Proc. of the 5th Internat. Cryogenic Eng. Conf., Kyoto 28 (1974).Google Scholar
  107. 107.
    St. Asztalos et al., Proc. of the 5th Internat. Cryogenic Eng. Conf., Kyoto, 37 (1974).Google Scholar
  108. 108.
    C. Albrecht, to be published in Proc. of the AMMAC 76, the Institute of Electrical Engineers, London.Google Scholar
  109. 109.
    T. Ohtsuka and Y. Kyotani, IEEE Transactions on Magnetics MAG 11, 608 (1975).CrossRefGoogle Scholar
  110. 110.
    Y. Kyotani, Cryogenics 15, 372 (1975).CrossRefGoogle Scholar
  111. 111.
    T. Iwahana, IEEE Transactions on Magnetics MAG 11, 1704 (1975).CrossRefGoogle Scholar
  112. 112.
    T. Ohtsuka, private communication (1976).Google Scholar
  113. 113.
    D.L. Atherton and A.R. Eastham, IEEE Transactions on Magnetics MAG 11, 627 (1975).CrossRefGoogle Scholar
  114. 114.
    D.L. Atherton and A.R. Eastham, Cryogenic Engineering Conf., Paper No. A-l, Kingston, Canada, 22–25 July 1975,Google Scholar
  115. 115.
    R.G. Rhodes and B.E. Mulhall, Cryogenics 15, 403 (1975).CrossRefGoogle Scholar
  116. 116.
    G.J. Homer et al., Rutherford Laboratory paper, to be published (1976).Google Scholar
  117. 117.
    J.R. Powell and G.R. Danby, ASME Paper 66 WA/RR 5 (1966); Cryogenics 11, 192 (1971).Google Scholar
  118. 118.
    R.H. Borcherts, Cryogenics 15, 385 (1975).CrossRefGoogle Scholar
  119. 119.
    H.H. Kolmand R.D. Thornton, Proc. of the Appl. Superconductivity Conf. Annapolis, IEEE, Pub. No. 72 CH0682–5-TABSC 76, (1972).Google Scholar
  120. 120.
    H.H. Kolm, Proc. of the 5th Internat. Conf. on Magnet Technology MT-5, Roma, 385 (1975).Google Scholar
  121. 121.
    J.S. Joyce et al., IEEE Trans. PAS 93, 210 (1974).Google Scholar
  122. 122.
    G. Bogner, Proc. of the 1972 Applied Superconductivity Conference, IEEE Publ. No. CH0589–5-TABSC, 214 (1972).Google Scholar
  123. 123.
    G. Bogner and D. Kullmann, Siemens Forsch.-u. Entwickl.-Ber., Vol. 4, 305 (1975).Google Scholar
  124. 124.
    G. Bogner and D. Kullmann, Siemens Forsch.-u. Entwickl.-Ber., Vol. 4, 368 (1975).Google Scholar
  125. 125.
    I.A. Glebov, Paper presented at the Conf. on Technical Applications of Superconductivity, Alushta, USSR, 16–19 September 1975.Google Scholar
  126. 126.
    C. Laverick, Review Paper on Applied Superconductivity in the USSR, 31 March 1976.Google Scholar
  127. 127.
    E. Massar, Proceedings of the Autumn-School on the Application of Superconductivity in Electrical Engineering and High Energy Physics, Titisee, 9–12 October 1972.Google Scholar
  128. 128.
    A.D. Appleton, Cryogenics 9, 147 (1969).CrossRefGoogle Scholar
  129. 129.
    K.R. Jones, Electr. Rev. 180, 50 (1967).Google Scholar
  130. 130.
    A.D. Appleton, Proc. of the 1972 Applied Superconductivity Conference, IEEE Pub. No. 72 CHO 682–5-TABSC, 16 (1972).Google Scholar
  131. 131.
    A.D. Appleton, IEEE Transactions on Magnetics MAG 11, 633 (1975).CrossRefGoogle Scholar
  132. 132.
    A.D. Appleton, Proc. of the Fifth Int. Conf. on Magnet Technology, MT-5, Roma, 447 (1975).Google Scholar
  133. 133.
    R.L. Rhodenizer, Navy Ship Systems Command Report Contract No. N 00024–68-C-5414, 27 February 1970.Google Scholar
  134. 134.
    C.J. Mole et al., APRA-Semi-Annual Technical Rep. for Period Ending 31 May 1975. Contract No. DAHC 15–72-C-02229.Google Scholar
  135. 135.
    P. Klaudy, Electortechn. u. Maschinenbau 78, 128 (1961).Google Scholar
  136. 136.
    P. Klaudy, Archiv für technisches Messen und industrielle Messtechnik 355, R 97 (1965).Google Scholar
  137. 137.
    J.L. Johnson et al., Proceedings of the Holm Seminar on Electrical Contact Phenomena 201 (1973).Google Scholar
  138. 138.
    P. Klaudy, Electrotechnik und Maschinenbau 89, 439 (1972).Google Scholar
  139. 139.
    A.D. Appleton, Superconducting Machines and Devices, Large Systems Applications, Nato Advanced Study Institutes Series, Plenum Press, 219 (1974).Google Scholar
  140. 140.
    W.J. Leveda, Proc. of the 1972 Applied Superconductivity Conf. IEEE Publ. No. CH0689–5-TABSC, 93 (1972).Google Scholar
  141. 141.
    G.R. Fox and B.D. Hatch, Proc. of the 1972 Applied Superconductivity Conference, IEEE Pub. No. 72CH0 689–5-TABSC, 93, (1972).Google Scholar
  142. 142.
    T.J. Doyle, Adv. in Cryog. Engineering 19, 162 (1974).Google Scholar
  143. 143.
    R.F. Shanahan General Electric Company, Public Information, 9 July 1976.Google Scholar
  144. 144.
    LA. Glebov, IEEE Transactions on Magnetics MAG 11, 657 (1975).CrossRefGoogle Scholar
  145. 145.
    J. P. Chabrerie et al., Proc. of the 1972 Applied Superconductivity Conference, IEEE Pub. No. 72CH0 689–5-TABSC, 93 (1972).Google Scholar
  146. 146.
    M. Yamamoto and M. Yamaguchi, Proc. of the Fifth Intern. Cryog. Eng. Conf., Kyoto, 154 (1974).Google Scholar
  147. 147.
    J.L. Smith Jr. and T.A. Keim, Superconducting Machines and Devices, Large Systems Applications, Nato Advanced Study Institute Series, Plenum Press, 279 (1974).Google Scholar
  148. 148.
    J.S. Joyce et al., Paper presented at the Amer.-Power Conf., Chicago,Ill, 8–10 May 1973.Google Scholar
  149. 149.
    J.H. Parker et al., IEEE Transactions on Magnetics MAG 11, 640 (1975).CrossRefGoogle Scholar
  150. 150.
    G. Bogner and D. Kullmann, Siemens Forsch.-u.-Entw.-Ber. 5, 12 (1976).Google Scholar
  151. 151.
    P.A. Rios, et al., Paper submitted to the Conf. on Technical Applications of Superconductivity, Alushta, USSR, 16–19 September 1975.Google Scholar
  152. 152.
    J.L. Smith Jr., Proc. of the Fifth Int. Conf. on Magnet Technology MT-5, Roma, 431 (1975).Google Scholar
  153. 153.
    C.C. Sterrett et al., Paper presented at the ASME-IEEE Joint Power Conference, Portland Oregon, 28 September-2 October 1975.Google Scholar
  154. 154.
    B.B. Gamble et al., Paper submitted to the ASME-IEEE Joint Power Conference, Portland Oregon, 28 September-2 October 1975.Google Scholar
  155. 155.
    J.L. Kirtley Jr. and N. Dagalakis, IEEE Transactions on Magnetics, MAG 11, 650 (1975).Google Scholar
  156. 156.
    G. Klipping, Proc. of 6th Internat. Vacuum Congr., Kyoto, Japan, 25–29 March 1974.Google Scholar
  157. 157.
    J.L. Smith Jr. et al., Proc. of the 1972 Applied Superconductivity Conference, IEEE Pubi. No. CH 0689–5-TABSC 145, 1972.Google Scholar
  158. 158.
    A. Hofmann, Sixth Int. Cryogenic Eng. Conf., Paper No. L-2, Grenoble, 11–14 May 1976.Google Scholar
  159. 159.
    R.G. Scurlock, Sixth Int. Cryog. Eng. Conf., Paper No. IP-7, Grenoble, 11–14 May 1976.Google Scholar
  160. 160.
    R.G. Scurlock and G.K. Thornton, Proc. of the Fifth Int. Conf. on Magnet Technology MT-5, Roma, 530, (1975).Google Scholar
  161. 161.
    Y. Mori et al., Int. J. Heat Mass Transfer 11, 1807 (1971).CrossRefGoogle Scholar
  162. 162.
    A.D. Appleton and A.F. Anderson, Proc. of the 1972 Appl. Superconductivity Conf., IEEE Publ. No. CH0689–5-TABSC 136 (1972).Google Scholar
  163. 163.
    B.W. Birmingham et al., Proc. of the Fifth Int. Cryog. Eng. Conf., Kyoto, 157 (1975).Google Scholar
  164. 164.
    ENEL — “Study on the future need for large generating units and high power underground cables in the European Community (1980–2000)” Contract No. 082–73–12-ECI. September, 1974.Google Scholar
  165. 165.
    J. L. Smith, Jr., Private communication, April 1976.Google Scholar
  166. 166.
    C.J. Mole et al., IEEE Trans PAS, Conf. Paper C 73259–9 (1973).Google Scholar
  167. 167.
    G. Bogner, Information received during a visit to the All Union Res. Inst. for Electrical Mach. Ind., Leningrad, September 1975.Google Scholar
  168. 168.
    S. Akijama et al., 6th Int. Cryog. Eng. Conf., Paper No. L-7, Grenoble, 11–14 May 1976.Google Scholar
  169. 169.
    C. Pinet, Proc. of the Fifth Int. Conf. on Magnet Technology, MT-5, Roma, 452 (1975).Google Scholar
  170. 170.
    P. Thullen et al., IEEE Transactions on Magnetic MAG 11, 653 (1975).CrossRefGoogle Scholar
  171. 171.
    A.D. Appleton et al., Cigre 11–02, 1976-Session August 25-September 2, 1976.Google Scholar
  172. 172.
    G. Bogner, Superconducting Machines and Devices, Large Systems Applications, Nato Advanced Study Institutes Series 1, Plenum Press New York-London, 401 (1974).Google Scholar
  173. 173.
    W. Kafka, Elektr. techn. Zeitschr. ETZ-A 90, 89 (1969).Google Scholar
  174. 174.
    P. Dubois et al., Proc. of the Applied Superconductivity Conference, Annapolis 1972, IEEE Pub. No. 72 CHO 682–5-TABSC, p. 173 (1972).Google Scholar
  175. 175.
    C.N. Carter, Cryogenics 13, 207 (1973).CrossRefGoogle Scholar
  176. 176.
    R.L. Garwin and J. Matisoo, Proc. IEEE 55, 538 (1967).CrossRefGoogle Scholar
  177. 177.
    E. B. Forsyth, Paper presented at the Conference on Technical Applications of Superconductivity, Alushta, USSR, 16–19 September 1975; BNL 20444.Google Scholar
  178. 178.
    H. Morihara et al., Cryog. Eng. Conf., Atlanta 1973, (Paper not published in Adv. Cryog. Eng., Vol. 19).Google Scholar
  179. 179.
    J.F. Bussiere et al., Appl. Phys. Letters 25, 756 (1974).CrossRefGoogle Scholar
  180. 180.
    G. Bogner, Cryogenics 16, 259 (1976).CrossRefGoogle Scholar
  181. 181.
    H.A. Ullmaier, Phys. Stat. Sol. 17, 631 (1966).CrossRefGoogle Scholar
  182. 182.
    J.D. Thompson et al., 1976 Applied Superconductivity Conference, Paper No. L9, Stanford, 17–20 August 1976.Google Scholar
  183. 183.
    P.H. Melville, J. Phys. C4, 2833 (1971).Google Scholar
  184. 184.
    W.J. Dunn and P. Hlawiczka, Brit. J. Appl. Phys., Ser. 2, 1, 1469 (1968),Google Scholar
  185. 184a.
    and G. Fournet and A. Mailfert, J. de Physique 31, 357 (1970).CrossRefGoogle Scholar
  186. 185.
    P. Penczynski et al., Cryogenics 14, 503 (1974).CrossRefGoogle Scholar
  187. 186.
    P. Penczynski, Deutsche Auslegeschrift No. 2310327, 12 February 1976.Google Scholar
  188. 187.
    W.T. Beali, IEEE Transactions on Magnetics MAG 11, 381 (1975).CrossRefGoogle Scholar
  189. 188.
    H. Franke, private communication (1976).Google Scholar
  190. 189.
    J. Sutton, Cryogenics 15, 541 (1975).CrossRefGoogle Scholar
  191. 190.
    G. Morgan and E.B. Forsyth, Cryogenic Engineering Conf., Paper No. U-5, Kingston, Ontario, Canada, 22–25 July 1975.Google Scholar
  192. 191.
    G. Matthäus and P. Massek, Siemens Research Labs.Google Scholar
  193. 192.
    B. Fallou et al., CIGRE-Report Nr. 15–04 (1974).Google Scholar
  194. 193.
    R.W. Meyerhoff, Adv. Cryog. Eng. 19, 101 (1974).Google Scholar
  195. 194.
    B. Fallou et al., Conf. Low Temperatures and Electric Power, London 1969, Proc. Int. Inst. Refrig., Comm. 1, Pergamon Press, New York 1970, p. 377.Google Scholar
  196. 195.
    J. Gerhold, Cryogenics 12, 370 (1972).CrossRefGoogle Scholar
  197. 196.
    B. Fallou, Proc. of the Fifth Int. Conf. on Magnet Technology, MT-5, Roma, 644 (1975).Google Scholar
  198. 197.
    R.W. Meyerhoff, private communication (1975).Google Scholar
  199. 198.
    E.B. Forsyth et al., Cryogenic Engineering Conf., Paper No. U-7, Kingston, Ontario, Canada, 22–25 July 1975.Google Scholar
  200. 199.
    H. Franke, private communication (1976).Google Scholar
  201. 200.
    D.A. Swift, 14th Internat. Congress of Refrigeration, Moscow, 20–30 September 1975.Google Scholar
  202. 201.
    D.E. Daney, Cryogenic Eng. Conf., Paper No. R-l, Kingston, Ontario, Canada, 22–25 July 1975.Google Scholar
  203. 202.
    J.W. Dean and J. E. Jensen, Cryogenic Eng. Conf., Paper No. R-7, Kingston, Ontario, Canada, 22–25 July 1975.Google Scholar
  204. 203.
    E.B. Forsyth, Paper submitted to the International Journal of Energy (1976).Google Scholar
  205. 204.
    Results obtained by Siemens Research Laboratories.Google Scholar
  206. 205.
    E. Bochenek et al., IEEE Trans. on Magnetics, MAG 11, 366 (1975).CrossRefGoogle Scholar
  207. 206.
    G. Bogner, Adv. in Cryog. Eng., 19, 78 (1974).Google Scholar
  208. 207.
    G. Bogner, Cryogenics 15, 79 (1975).CrossRefGoogle Scholar
  209. 208.
    B.J. Maddock et al., CIGRE Report 21–05, 25 August-2 September 1976.Google Scholar
  210. 209.
    D.A. Swift, private communication (1976).Google Scholar
  211. 210.
    P.A. Klaudy, Elektrotechnik und Maschinenbau 89, 93 (1972).Google Scholar
  212. 211.
    Y.L. Blinkov, Paper presented at the Conference on Technical Applications of Superconductivity, Alushta, USSR, 16–19 September 1975.Google Scholar
  213. 212.
    Y. Furuto et al., Proc. Fifth Int. Cryogenic Eng. Conf., Kyoto, 180 (1975).Google Scholar
  214. 213.
    Y. Furuto, private communication (1976).Google Scholar
  215. 214.
    R.W. Meyerhoff, Cryogenic Eng. Conf., Paper No. R-8, Kingston, Ontario, Canada, 22–25 July 1975.Google Scholar
  216. 215.
    W.E. Keller and R.D. Taylor, Los Alamos Scientific Lab Progress Report LA-6215-PR, February 1976.Google Scholar
  217. 216.
    Deutsche Systemstudie “Elektrische Hochleistungsübertragung” to be published during 1976.Google Scholar
  218. 217.
    J. Erb et al., Comparison of Advanced High Power Underground Cable Designs, Kernforschungszentrum Karlsruhe, KFK 2207, September 1975.Google Scholar
  219. 218.
    T. Ohtsuka, private communication (1976).Google Scholar

Copyright information

© Plenum Press, New York 1977

Authors and Affiliations

  • G. Bogner
    • 1
  1. 1.Research Laboratories of SiemensAG ErlangenGermany

Personalised recommendations