Resistive Devices

  • J. G. Park
Part of the NATO Advanced Study Institutes Series book series (NSSB, volume 21)


Resistive SQUIDs, here called RSOUIDS, may be thought of as SQUIDs in which some of the superconducting material has been replaced by normal metal (Fig. 1). Magnetic flux ∅m varying with time, produced by current im in a coil inductively coupled to the RSQUID by mutual inductance M, will cause the output voltage vo to oscillate just as it would for a SQUID, but only if im varies sufficiently rapidly. The voltage vo may be caused to oscillate in another way: if an external current I is passed through the normal metal region N (Fig. lb) vo will oscillate at a frequency f = IR/∅o, where R is the resistance of N.


Weak Link Normal Metal Heat Current External Current Phase Sensitive Detector 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Zimmerman, J. E. and Silver, A. H., J. Appl. Phys. 39, 2679 (1968).CrossRefGoogle Scholar
  2. 2.
    Josephson, B. D., Phys. Letters 1, 251 (1962).CrossRefGoogle Scholar
  3. 3.
    Zimmerman, J. E., Cowen, J. A. and Silver, A. H., Appl. Phys. Letters 9, 353(1966).CrossRefGoogle Scholar
  4. 4.
    Park, J. G., J. Phys. F: Metal Phys. 4, 2239 (1974).CrossRefGoogle Scholar
  5. 5.
    Kamper, R. A., Proc. Conf. Superconducting Devices, Charlottesville, Virginia (1967).Google Scholar
  6. 6.
    Kamper, R. A. and Zimmerman, J. E., J. Appl. Phys. 42, 132 (1971).CrossRefGoogle Scholar
  7. 7.
    Kamper, R. A., Siegwarth, J. D., Radebaugh, R. and Zimmerman, J. E., Proc. IEEE 59, 1368(1971).CrossRefGoogle Scholar
  8. 8.
    Soulen, R. J. and Marshak, H., Proc. Conf. Appl. Super-conductivity, p. 588 (1972).Google Scholar
  9. 9.
    Soulen, R. J. and Finnegan, T. F., Revue de Phys. Appl. 9, 305 (1974).CrossRefGoogle Scholar
  10. 10.
    Park, J. G., to be presented at the IC SQUID Conf., W. Berlin, September 1976.Google Scholar
  11. 11.
    Giffard, R. P., Webb, R. A. and Wheatley, J. C., J. Low Temp. Phys. 6, 533 (1972).CrossRefGoogle Scholar
  12. 12.
    Harding, J. T. and Zimmerman, J. E., J. Appl. Phys. 41, 1581 (1970).CrossRefGoogle Scholar
  13. 13.
    Sullivan, D. B., Peterson, L., Kose, V. E. and Zimmerman, J. E., J. Appl. Phys. 41, 4865 (1970).CrossRefGoogle Scholar
  14. 14.
    Zimmerman, J. E., Thiene, P. and Harding, J. T., J. Appl. Phys. 41, 1572 (1970).CrossRefGoogle Scholar
  15. 15.
    Fife, A. A. and Gygax, Sl, J. Appl. Phys. 43, 2391 (1972).CrossRefGoogle Scholar
  16. 16.
    Webb, R. A., Giffard, R. P. and Wheatley, J. C., J. Low Tempo Phys. 13, 383 (1973).CrossRefGoogle Scholar
  17. 17.
    Park, J. G. and Kendall, J. P., Proc. Int. Conf. Low Temp. Phys. LT14, Helsinki 3, 164(1975).Google Scholar
  18. 18.
    Park, J. G., Farrell, D. E. and Kendall, J. P., J. Phys. F: Metal Phys. 3, 2169 (1973).CrossRefGoogle Scholar
  19. 19.
    Kamper, R. A., in this volume (Chap. 5).Google Scholar

Copyright information

© Plenum Press, New York 1977

Authors and Affiliations

  • J. G. Park
    • 1
  1. 1.Department of Physics, Blackett LaboratoryImperial CollegeLondonUK

Personalised recommendations