Infrared Studies of Defects

  • R. C. Newman
Part of the Nato Advanced Study Institutes Series book series (NSSB, volume 19)


Semiconductor crystals such as silicon are opaque in the visible region of the spectrum and to investigate defects by optical means it is usually necessary to use long wavelength radiation. A difference between silicon and the compound semiconductors is that there is no intrinsic one phonon absorption (Reststrahl-band) because of the symmetry of the diamond structure. Consequently, apart from relatively weak absorption features due to two and three phonon processes(1), silicon and germanium are transparent from zero frequency up to their fundamental electronic edges, at about 104cm−1 (λ~1μm) for silicon, with an energy gap of 1.1eV, and a somewhat lower frequency for germanium with a gap of 0.65eV. It follows that the presence of extrinsic absorption in the form of discrete bands arising from defects is relatively easy to detect providing any continuum of electronic absorption due to free holes or electrons is negligible. This means that the material that can be examined may contain only a very small concentration of shallow donors or acceptors, or alternatively, there must be a high degree of electrical compensation. In the latter case either one or even both types of defects could be intrinsic in nature rather than impurity atoms.


Impurity Atom Gallium Arsenide Infrared Study Vibrational Absorption Gallium Phosphide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    F. A, Johnson, Proc. Phys.Soc., 73., 265, (1959).Google Scholar
  2. 2.
    S.R.Morrison and R.C.Newman, J.Phys.C.:Solid St.Phys.,7, 619, (1974).Google Scholar
  3. 3.
    D.A.Kleinman and W.G.Spitzer, Phys.Rev.,118, 110, (1960).Google Scholar
  4. 4.
    R.C.Newman, Infra-red studies of Crystal Defects ( Taylor and Francis, London, 1973 ).Google Scholar
  5. 5.
    G.D.Watkins and J.W.Corbett, Phys.Rev. 121, 1001, (1961); ibid 121, 1015, (1961).Google Scholar
  6. 6.
    G.D.Watkins, Radiation Effects in Semiconductors (Dunod, Paris) p. 97, (1965).Google Scholar
  7. 7.
    M Balkanski and W.Nazarewicz, J.Phys.Soc.Japan, 18, suppl. II, 37, (1963).Google Scholar
  8. 8.
    J.F.Angress, A.R.Goodwin and S.D.Smith, Proc.Roy.Soc.A, 308, 111, (1968).Google Scholar
  9. 9.
    M.R.Brozel, K.Laithwaite, R.C.Newman and D.H.J.Totterdell, Sol.St.Comm. in the press.Google Scholar
  10. 10.
    V.I.Vettegren, E.G.Kuzminov, V.V.Baptizmanskii and I.I.Navak Sov. Phys.Solid State, 15, 770, (1973).Google Scholar
  11. 11.
    R.S.Leigh and B.Szigeti, Proc.Roy.Soc.A, 301, 211, (1967).Google Scholar
  12. 12.
    J.E.Fischer, Phys.Rev., 181, 1368, (1969).Google Scholar
  13. 13.
    L.J.Cheng and J.Lori, Phys.Rev., 171,, 856, (1968).Google Scholar
  14. 14.
    H.J.Stein, Rad.Damage and Defects in Semiconductors (IOP, London) p315, (1973).Google Scholar
  15. 15.
    R. Coates and E.W.J.Mitchell, J. Phys. C.: Sol. St. Phys., 5, L113, (1972).Google Scholar
  16. 16.
    G.D.Watkins, Sym. on Rad.Effects on Semicond.Components (Toulouse) AI, 1, (1967).Google Scholar
  17. 17.
    G.D.Watkins and J.W.Corbett, Phys.Rev., 138A, 543, (1965).Google Scholar
  18. 18.
    L.J.Cheng, J.C.Corelli, J.W.Corbett and G.D.Watkins, Phys.Rev., 152, 761, (1966).ADSCrossRefGoogle Scholar
  19. 19.
    C.S.Chen, R.Vogt-Lowe11 and J.C.Corelli, Rad.Damage and Defects in Semiconductors (IOP, London) p210, (1973).Google Scholar
  20. 20.
    M.T.Lappo and V.D.Tkachev, Sov.Phys.–Semiconductors 4, 1882, (1971).Google Scholar
  21. 21.
    J.C.Corelli, R.C.Young and C.S.Chen, I.E.E.E. Trans. Nucl.Sci. NS17, 128, (1970).Google Scholar
  22. 22.
    A.Brelot, Rad.Damage and Defects in Semiconductors (IOP,London) pl91, (1973).Google Scholar
  23. 23.
    V.N.Mordkovich, S.P.Solovev, E.M.Temper and V.A.Kharchenko, Sov.Phys-Semiconductors, 8, 666, (1974).Google Scholar
  24. 24.
    A.R.Bean, R.C.Newman and R.S.Smith, J.Phys.Chem.Solids, 31, 739, (1970).Google Scholar
  25. 25.
    L.C.Kimerling, P.J.Drevinsky and C.S.Chen, Rad.Damage and Defects in Semiconductors (IOP London) p. 182, (1973).Google Scholar
  26. 26.
    R.C.Newman and D.H.J.Totterdell, Lattice Defects in Semiconductors (IOP, London) p. 172, (1975).Google Scholar
  27. 27.
    A.Jaworowski and H.Rzewuski, ibid. p.221, (1975).Google Scholar
  28. 28.
    F.Thompson, S.R.Morrison and R.C.Newman, Radiation Damage and Defects in Semiconductors (IOP, London) p371, (1973).Google Scholar
  29. 29.
    S.R.Morrison and R.C.Newman, J.Phys.C: Solid St.Phys.,6, L223, (1973).Google Scholar
  30. 30.
    D.Bauerle and R.Htibner, Phys.Rev.B.2., 4252, (1970).Google Scholar
  31. 31.
    S.R.Morrison, Ph.D.Thesis, University of Reading (1973).Google Scholar

Copyright information

© Plenum Press, New York 1976

Authors and Affiliations

  • R. C. Newman
    • 1
  1. 1.J.J. Thomson Physical LaboratoryUniversity of ReadingBerks.UK

Personalised recommendations