Advertisement

Magnetic Resonance Studies of Vacancy Centers in Ionic Crystals

  • J. M. Spaeth
Part of the Nato Advanced Study Institutes Series book series (NSSB, volume 19)

Abstract

The application of magnetic resonance techniques to the study of paramagnetic centres has greatly improved our understanding of point defects. In fact ESR (Electron Spin Resonance) and especially ENDOR (Electron Nuclear Double Resonance) come close to what one may call an atomic scale microscopy of paramagnetic centres. In favourable cases one obtains a very detailed picture of the atomic structure of a defect (lattice site, neighbours, symmetry) including information about lattice distortions around the vacancy or the paramagnetic impurity, as well as detailed information about the electronic structure of the centre. This very precise picture of the paramagnetic defect is mainly the result of a careful determination of the strong hyperfine interaction (hf) between the unpaired centre electron and the centre nuclei as well as the weaker hf interaction with the nuclei of the surrounding lattice ions, (sometimes called “superhyperfine interaction”, shf). In order to determine the latter, ENDOR measurements usually have to be performed, since they allow a much higher resolution of hf interactions compared to ESR measurements. Vacancy centres mostly contain no centre nuclei so that the shf interactions must be determined.

Keywords

Quadrupole Interaction Ionic Crystal Alkali Halide ENDOR Spectrum Order Perturbation Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C. A. Hutchison, Phys. Rev. 75, 1769 (1949)Google Scholar
  2. 2.
    H. Seidel, Z. Physik, 165, 218, 239 (1961)CrossRefGoogle Scholar
  3. 3.
    W. T. Doyle, Phys. Rev. 126, 1421 (1962)Google Scholar
  4. 4.
    J. H. De Boer, Ree. Trav. Chim. 56, 301 (1937)Google Scholar
  5. 5.
    H. Seidel and H. C. Wolf, in “Physics of Color Centers,” ed. by W. Beali Fowler ( Academic Press, New York, 1968 ) p. 538Google Scholar
  6. 6.
    B. Henderson and I. E. Wertz, Advan. Phys. 17, 747 (1968)Google Scholar
  7. 7.
    A. E. Hughes and B. Henderson, in “Point Defects in Solids”, Vol. 1, ed. by J. H. Crawford, Jr. and L.M. Slifkin ( Plenum Press, New York-London, 1972 ), p. 381CrossRefGoogle Scholar
  8. 8.
    W. Hayes, in “Crystals with the fluorite structure”, ed. by W. Hayes, p. 185 ( Clarendon Press, Oxford 1974 )Google Scholar
  9. 9.
    R. Kersten, phys. stat. sol. 29, 575 (1968)Google Scholar
  10. 10.
    E. Fermi, Z. Physik 60, 320 (1930)Google Scholar
  11. 11.
    G. Feher, Phys. Rev. 114, 1219, 1249 (1959)ADSGoogle Scholar
  12. 12.
    W. C. Hoiton and H. Blum, Phys. Rev. 125, 89 (1962)Google Scholar
  13. 13.
    U. Ranon and J. S. Hyde, Phys. Rev. 141, 259 (1966)Google Scholar
  14. 14.
    J. M. Spaeth, Z. Physik 192, 107 (1966)Google Scholar
  15. 15.
    H. Seidel, “Habilitationsschrift” Stuttgart (1966)Google Scholar
  16. 16.
    J. M. Spaeth, “Habilitationsschrift” Stuttgart (1966)Google Scholar
  17. 17.
    J. Arends, phys. stat. sol. 7, 805 (1964)Google Scholar
  18. 18.
    A. M. Stoneham, W. Hayes,P. H. S. Smith and J. P. Stott Proc. R. Soc. A 306, 369 (1968)Google Scholar
  19. 19.
    D. Schmid, phys. stat. sol. 18, 653 (1966)Google Scholar
  20. 20.
    J. W. Culvahouse, L.V. Holroyd and J. L, Kolopus Phys. Rev. 140, 1181 (1965)Google Scholar
  21. 21.
    B. S. Gourary and F. J. Adrian, Phys. Rev. 105, 1180 (1957)Google Scholar
  22. 22.
    B. S. Gourary and F. J. Adrian, Solid State Physics 10, 127, (1960)Google Scholar
  23. 23.
    J. K. Kubier and R. J. Friauf, Phys. Rev. 140, A 1742 (1965)Google Scholar
  24. 24.
    W. B. Fowler in “Physics of Color Centres” ed. by W.B. Fowler, p. 54 ( Academic Press, New York 1968 )Google Scholar
  25. 25.
    R. H. Bartram, A. L. Harmer and W. Hayes, J. Phys. C. Sol.St. Phys. 4, 1665 (1971)Google Scholar
  26. 26.
    R. Kersten, Solid State Comm. 8, 167 (1970)Google Scholar
  27. 27.
    R. L. Mieher, Phys. Rev. Letters 8, 362 (1962)Google Scholar
  28. 28.
    H. Ohkura, K. Murase and H. Sugimoto, J. Phys. Soc. Japan 17, 708 (1962)Google Scholar
  29. 29.
    J. C. Buschnell, Thesis, Univ. of Illinois, unpublished (1964)Google Scholar
  30. 30.
    W. Rusch and H. Seidel, Solid State Comm. 9, 231 (1971)Google Scholar
  31. 31.
    M. Schwoerer and H. C. Wolf, Z. Physik 175, 457 (1963)Google Scholar
  32. 32.
    H. Groß, Z. Physik 164, 341 (1961)Google Scholar
  33. 33.
    D. C. Krupka and R. H. Silsbee, Phys. Rev. 152, 816 (1966)Google Scholar
  34. 34.
    H. Seidel, Phys. Letters 7, 27 (1963)Google Scholar
  35. 35.
    H. Seidel, M. Schwoerer and D. Schmid, Z. Physik 182, 398 (1965)Google Scholar
  36. 36.
    H. Seidel, Colloque Ampère XV, North Holland, Amsterdam, p. 141 (1969)Google Scholar

Copyright information

© Plenum Press, New York 1976

Authors and Affiliations

  • J. M. Spaeth
    • 1
  1. 1.Fachbereich 6 - ExperimentalphysikGesamthochschule Paderborn479 PaderbornW.Germany

Personalised recommendations