Advertisement

Defects in Non-Crystalline Oxides

  • David L. Griscom
Part of the Nato Advanced Study Institutes Series book series (NSSB, volume 19)

Abstract

The study of defects in crystals traces its beginnings to the early 19th century and has been intensively pursued for the past 50 years, leading to a tremendously detailed body of knowledge concerning “color centers” in materials with long range order.1,2 On the other hand, non-crystalline oxides have been actively developed for their aesthetic and utilitarian qualities since at least the second millennium B.C.,3,4 and they have now reached a new peak of technological importance with the recent advent of fiber optics and metal-oxide-semiconductor (MOS) structures to name a few. Yet full application of the most modern techniques of solid state science to the problem of defects in oxide glasses has been confined mostly to the last two decades, and but a few review articles have been written on the subject.5–7 Understandably, the broadening and overlapping of both optical and electron spin resonance (ESR) bands due to random local distortions, coupled with the intrinsic inability to exploit crystal symmetry, has discouraged most color center scientists from dealing with glasses. However, the ESR method in particular is now proving to be a surprisingly powerful tool for unraveling the electronic structures of magnetic defects in non-crystalline oxides and other glassy solids.

Keywords

Electron Spin Resonance Electron Spin Resonance Spectrum Hyperfine Interaction Oxide Glass Lunar Soil 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J.H. Schulman and W.D. Compton, Color Centers in Solids, ( MacMillan, New York, 1962 ).Google Scholar
  2. 2.
    W.B. Fowler (ed). Physics of Color Centers ( Academic Press, New York, 1968 ).Google Scholar
  3. 3.
    D.P. Barag, IX Congrès International du Verre, Artistic and Historical Communications, p. 183, 1972.Google Scholar
  4. 4.
    H. Rawson, Inorganic Glass-Forming Systems ( Academic Press, London, 1967 ).Google Scholar
  5. 5.
    E. Lell, N.J. Kreidl and J.R. Hensler, in: Progress in Ceramic Science, Vol. 4, Ed. J. Burke ( Pergamon, Oxford, 1966 ).Google Scholar
  6. 6.
    A. Bishay, J. Non-Crystalline Solids 3, 54 (1970).Google Scholar
  7. 7.
    D.L. Griscom, J. Non-Cryst. Solids 13, 251 (1973/74).Google Scholar
  8. 8.
    P.J. Bray and J.G. O’Keefe, Phys. Chem. Glasses 4, 37 (1963); P.J. Bray, in: Interaction of Radiation with Solids, Ed. A. Bishay, ( Plenum Press, New York, 1967 ).Google Scholar
  9. 9.
    R.A. Weeks, J. Appl. Phys. 27, 1376 (1956); C.M. Nelson and R.A. Weeks, J. Am. Ceram. Soc. 43, 396 (1960); ibid 43, 399 (1960); R.H. Silsbee, J. Appl. Phys. 32, 1459 (1961); F.J. Feigl and J.H. Anderson, J. Phys. Chem. Solids 31, 575 (1970).Google Scholar
  10. 10.
    M.C.M. 0!Brien, Proc. Roy. Soc. (London) A231, 404 (1955).Google Scholar
  11. 11.
    H. Lozykowski, R.G. Wilson, and F. Holuj, J. Chem. Phys. 51, 2309 (1969).Google Scholar
  12. 12.
    J.H. Anderson and J.A. Weil, J. Chem. Phys. 31, 427 (1959).Google Scholar
  13. 13.
    J.H. Mackey, Jr., J. Chem. Phys. 39, 74 (1963).Google Scholar
  14. 14.
    P.C. Taylor, J.F. Baugher, and H.M. Kriz, Chem. Rev. 75, 205 (1975).Google Scholar
  15. 15.
    R.H. Sands, Phys. Rev. 99., 1222 (1955).Google Scholar
  16. 16.
    P.C. Taylor and P.J. Bray, J. Mag. Res. 2, 305 (1970).Google Scholar
  17. 17.
    D.L. Griscom, Ph.D. Thesis, Brown University, Providence, R.I., 1966.Google Scholar
  18. 18.
    J.O. Edwards, D.L. Griscom, R.B. Jones, K.L. Watters, and R.A. Weeks, J. Am. Chem. Soc. 91, 1095 (1969).Google Scholar
  19. 19.
    W. Kanzig and M.H. Cohen, Phys. Rev. Lettr. 3, 509 (1959).Google Scholar
  20. 20.
    D.L. Griscom, Solid State Comm. 11, 899 (1972).Google Scholar
  21. 21.
    G.E. Peterson, C.R. Kurkjian, and A. Carnevale, Phys. Chem. Glasses 15, 52 (1974).Google Scholar
  22. 22.
    A.R. Ruffa, Phys. Rev. Lett. 25, 650 (1970); A.J. Bennett and L.M. Roth, J. Phys. Chem Solids 32, 1251 (1971); A.R. Ruffa, J. Non-Cryst. Solids 13, 37 (1973).Google Scholar
  23. 23.
    F.J. Feigl, W.B. Fowler, and K.L. Yip, Sol. State Comm. 14, 225 (1974); K.L. Yip and W.B. Fowler, Phys. Rev. B11, 2337 (1975).Google Scholar
  24. 24.
    See, for example G.W. Arnold and W.D. Compton, Phys. Rev. 116, 802 (1959); P.W. Levy, Phys. Chem. Solids 13, 287 (1960); R.A. Weeks and E. Lell, J. Appl. Phys. 35., 1932 (1964).Google Scholar
  25. 25.
    R.A. Weeks and C.M. Nelson, J. Appl. Phys. 31, 1555 (1960).Google Scholar
  26. 26.
    a) E.J. Friebele, D.L. Griscom, R.J. Ginther, and G.H. Sigel, Jr., Proc. Tenth International Cong, on Glass, Kyoto, Japan, p. 6-16 (1974); (b) E.J. Friebele, R.J. Ginther, and G.H. Sigel, Jr., Appl. Phys. Lett. 24, 412 (1974); G.H. Sigel, Jr. and B.D. Evans, Appl. Phys. Lett. 24, 410 (1974); B.D. Evans and G.H. Sigel, Jr., IEEE Trans, on Nuc. Sci. NS-21, 113 (1974).Google Scholar
  27. 27.
    D.L. Griscom, E.J. Friebele, and G.H. Sigel, Jr., Sol. State Comm. 15, 479 (1974).Google Scholar
  28. 28.
    A.R. Reinberg, J. Chem. Phys. 41, 850 (1964).Google Scholar
  29. 29.
    J.W.H. Schreurs, J. Chem. Phys. 47, 818 (1967).Google Scholar
  30. 30.
    R.F. Tucker, in Advances in Glass Technology, Proc. Sixth International Cong, on Glass, Washington, 1962 ( Plenum, New York, 1963 ), Vol. I, p. 121.Google Scholar
  31. 31.
    T.A. Sidorov and B.A. Tyul’kin, Dokl. Akad, Nauk SSSR 175, 872 (1967).Google Scholar
  32. 32.
    D.L. Griscom, Bull. Am. Ceram. Soc. 54, 436 (1975).Google Scholar
  33. 33.
    S. Lee and P.J. Bray, J. Chem. Phys. 39, 2863 (1963).Google Scholar
  34. 34.
    D.L. Griscom, P.C. Taylor, D.A. Ware, and P.J. Bray, J. Chem. Phys, 48, 5158 (1968).Google Scholar
  35. 35.
    F.W. Dabby, D.A. Pinnow, F.W. Ostermayer, L.G. Van Uiteri, M.A. Saifi, and I. Camibel, Appl. Phys. Lett. 25, 714 (1974).Google Scholar
  36. 36.
    D.L. Griscom, G.H. Sigel, Jr., and R.J. Ginther, submitted to J. Appl. Phys. (June, 1975 ).Google Scholar
  37. 37.
    D.L. Griscom, P.C. Taylor and P.J. Bray, J. Chem. Phys. 50, 977 (1969).Google Scholar
  38. 38.
    D.L. Griscom, J. Non-Crystalline Solids 6, 275 (1971).Google Scholar
  39. 39.
    K.L. Yip and W.B. Fowler, Phys. Rev. B10, 1400 (1974).Google Scholar
  40. 40.
    T.H. DiStefano and D.E. Eastman, Phys. Rev. Lett. 27, 1560 (1971); H. Ibach and J.E. Rowe, Phys. Rev. B10, 710 (1974).Google Scholar
  41. 41.
    D.L. Griscom, P.C. Taylor, and P.J. Bray, J. Chem. Phys. 53, 469 (1970).Google Scholar
  42. 42.
    R.V. Lorenze and F.J. Feigl, Phys. Rev. B8, 4833 (1973).Google Scholar
  43. 43.
    E.J. Friebele, Bull. Am. Ceram. Soc. 54, 436 (1975); manuscript in preparation.Google Scholar
  44. 44.
    Y.M. Kim and P.J. Bray, J. Chem. Phys. 49, 1298 (1968).Google Scholar
  45. 45.
    E.J. Friebele, D.L. Griscom, and G.H. Sigel, Jr., J. Appl. Phys. 45, 3424 (1974).Google Scholar
  46. 46.
    T.A. Puree11 and R.A. Weeks, J. Phys. Chem. Glasses 10, 198 (1969); R.A. Weeks and T.A. Purcell, J. Chem. Phys. 43, 483 (1965); G.F.J. Garlick, J.E. Nicholls, and A.M. Ozer, J. Phys. C4, 2230 (1971).Google Scholar
  47. 47.
    R.A. Weeks, J. Appl. Phys. 27, 1376 (1956).Google Scholar
  48. 48.
    D.L. Griscom, unpublished work.Google Scholar
  49. 49.
    D.L. Griscom, J. Chem. Phys. 51, 5186 (1969).Google Scholar
  50. 50.
    M. Hass and D.L. Griscom, J. Chem. Phys. 51, 5185 (1969).Google Scholar
  51. 51.
    D. Schoemaker, Phys. Rev. 149,693 (1966); W. Dreybrodt and D. Silber, Phys. Status Solidi 16, 215 (1966).Google Scholar
  52. 52.
    D.L. Griscom, C.L. Marquardt, E.J. Friebele, and D.J. Dunlop, Earth Planet. Sci. Lett. 24, 78 (1974).Google Scholar
  53. 53.
    G.W. Pearce, R.J. Williams, and D.S. McKay, Earth Planet. Sci. Lett. 17, 95 (1972).Google Scholar
  54. 54.
    M.P.O’Horo, Bull. Amer. Ceram. Soc. 53, 324, 356 (1974); manuscript in preparation.Google Scholar
  55. 55.
    D.L. Griscom, E.J. Friebele, and C.L. Marquardt, Proc. Lunar Sci. Conf. 4th, Geochim. Cosmochim. Acta, Suppl. 4, Vol. 3, 2709 (1973).Google Scholar
  56. 56.
    R.A. Weeks, D.L. Griscom, and P.M. Bell, Proc. 18th Ampere Congress, Nottingham, 1974, p. 167.Google Scholar
  57. 57.
    E. Schlomann, J. Phys. Chem. Solids 6, 257 (1958).Google Scholar
  58. 58.
    F.-D. Tsay, S.I. Chan, and S.L. Manatt, Geochim. Cosmochim. Acta 35, 865 (1971).Google Scholar
  59. 59.
    D.L. Griscom, Geochim. Cosmochim. Acta 38, 1509 (1974).Google Scholar
  60. 60.
    R.M. Housley, R.W. Grant, and M. Abdel-Gawad, Proc. Lunar Sci. Conf. 3rd, Geochim. Cosmochim. Acta, Suppl. 3, Vol. 1, 1065 (1972).Google Scholar
  61. 61.
    D.L. Griscom, C.L. Marquardt, and E.J. Friebele, J. Geophys. Res. 80, 2935 (1975).Google Scholar
  62. 62.
    R.J. Williams and E.K. Gibson, Earth Planet. Sci. Lett. 17, 84 (1972).Google Scholar
  63. 63.
    T.H. DiStefano and D.E. Eastman, Solid State Comm. 9, 2259 (1971).Google Scholar
  64. 64.
    G.H. Sigel, Jr., J. Non-Cryst. Solids 13, 372 (1973/74).Google Scholar
  65. 65.
    D.L. Griscom and G.H. Sigel, Jr., Bull. Am. Phys. Soc. 13, 1474 (1968); G.H. Sigel, Jr. and D.L. Griscom, Bull. Am. Ceram. Soc. 48, 447 (1969).Google Scholar
  66. 66.
    P.W. Atkins and M.C.R. Symons, The Structure of Inorganic Radicals, Elsevier, London, 1967.Google Scholar
  67. 67.
    C.L. Marquardt and G.H. Sigel, Jr., submitted to IEEE Trans, on Nucl. Sci. NS-22, No. 6, (1975).Google Scholar

Copyright information

© Plenum Press, New York 1976

Authors and Affiliations

  • David L. Griscom
    • 1
  1. 1.Naval Research LaboratoryUSA

Personalised recommendations