Advertisement

Internal Friction and Defects Near Dislocations

  • R. De Batist
Part of the Nato Advanced Study Institutes Series book series (NSSB, volume 19)

Abstract

Although de La Palice did not know about dislocations, it is at present a lapalissade (1) to state that the mechanical properties of crystalline materials are determined by the behaviour of the crystal dislocations. Dislocations disturb the crystalline periodicity of the lattice and thereby generate a stress and strain field in their surroundings. This dislocation stress field interacts with the strain fields of other crystalline defects such as other dislocations and also point defects. The result of these interaction effects is that a dislocation, moving through the crystal under the influence of say an external shear stress, will be hindered in its motion by these other defects. An understanding of dislocation-point defect interaction (DPDI) is therefore very important if one wishes to explain the mechanical behaviour of a crystal.

Keywords

Point Defect Internal Friction Dislocation Line Anion Vacancy Loop Length 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. (1).
    See e. g. “Petit Larousse” (1964)Google Scholar
  2. (2).
    Second International Conference on Strength of Metals and Alloys, ASM (1970)Google Scholar
  3. (3).
    Dislocation Dynamics ed A.R. Rosenfield et al, Mc Graw Hill, New York (1968)Google Scholar
  4. (4).
    The Interactions between Dislocations and Point Defects, ed. B.L. Eyre - AERE - R 5944 (1968)Google Scholar
  5. (5).
    R. De Batist, Reviews on the Deformation Behaviour of Materials (to he published)Google Scholar
  6. (6).
    A.S. Nowick & B.S. Berry, Anelastic Relaxation in Crystalline Solids, Academic Press, New York (1972)Google Scholar
  7. (7).
    R. De Batist, Internal Friction of Structural Defects in Crystalline Solids, N. Holland, Amsterdam (1972)Google Scholar
  8. (8).
    J.S. Koehler in Imperfections in Nearly Perfect Crystals J. Wiley, New York (1952)Google Scholar
  9. (9).
    A.V. Granato & K. Lücke, J. Appl. Phys. 27, 583, 789 (1956)CrossRefGoogle Scholar
  10. (10).
    A. Hikata & C. Elbaum, Phys. Rev. 144, 469 (1966)ADSCrossRefGoogle Scholar
  11. (11).
    R. Bullough in. (4)Google Scholar
  12. (12).
    A.H. Cottrell & B.A. Bilby, Proc. Phys. Soc. 62, 49 (1949)Google Scholar
  13. (13).
    R. Bullough & R.C. Newman, Proc. Roy. Soc. A 266, 198 and 209 (1962) Rep. Progr. Phys. 33, 101 (1970)Google Scholar
  14. (14).
    S. Harper, Phys. Rev. 83, 709 (1951)Google Scholar
  15. (15).
    R.H. Chambers & R. Smoluchowski, Phys. Rev. 117, 725 (1960)Google Scholar
  16. (16).
    J.S. Kim, L. Slifkin & A. Fukai, J. Phys. Chem. Solids 35, 741 (1974)Google Scholar
  17. (17).
    S.H. Carpenter, Acta Met. 16, 73 (1968)Google Scholar
  18. (18).
    G. Guenin, J. Perez & P.F. Gobin, Cryst. Latt. Defects, 3, 199 (1972)Google Scholar
  19. (19).
    D.C. Phillips, P.L. Pratt, Phil. Mag. 21, 217 (1970)Google Scholar
  20. (20).
    C.R. Scorey, Phil. Mag. 21, 723 (1970)Google Scholar
  21. (21).
    A.A. Blistanov, G.V. Malakhov & M.P. Shaskol!skava, Sov. Phys. S.S. 6, 1935 (1965)Google Scholar
  22. (22).
    R. Strumane, R. De Batist & S. Amelinckx, Phys. stat. sol. 3, 1379 (1963)Google Scholar
  23. (23).
    D.C. Phillips & P.L. Pratt, Phil. Mag. 22, 809 (1970)Google Scholar
  24. (24).
    I.E. French & R.W. Harris, J. Phys. C 4, 331 (1971)Google Scholar
  25. (25).
    I.E. French, J. Phys. C 4, 1725 (1971)Google Scholar
  26. (26).
    I.G. Ritchie & K.W. Sprungmann, Scripta Met. 7, 323 (1973)Google Scholar
  27. (27).
    D.G. Blair, T.S. Hutchison & D.H. Rogers, Can. J. Phys. 49, 633 (1971)Google Scholar
  28. (28).
    F. Bassani & R. Thomson, Phys. Rev. 102, 1264 (1956)Google Scholar
  29. (29).
    W.A. Brantley & C.L. Bauer, Phil. Mag. 20, 441 (1969)Google Scholar
  30. (30).
    J.F. Nye, Physical Properties of Crystals, Clarendon Press, Oxford (1957)MATHGoogle Scholar
  31. (31).
    J.D. Eshelby, C.W.A. Newey, P.L. Pratt & A.B. Lidiard, Phil. Mag. 3, 75 (1958)Google Scholar
  32. (32).
    R. De Batist, E. Van Dingenen, Yu. N. Martyshev, I.M. Silvestrova & A.A. Urusovskaya, Sov. Phys. Crystallography 12, 881 (1968)Google Scholar
  33. (33).
    B.K. Kardashev & S.P. Nikanorov, Sov. Phys. Solid State 13, 128 (1971); 16, 690 (1974) B.K. Kardashev, S.P. Nikanorov & O.A. Voinova, Sov. Phys. Solid State 16, 687 (1974); Phys. stat. solidi 256, 359 (1974)Google Scholar
  34. (34).
    V.L. Indenbom & V.N. Chernov, Phys. stat. solidi 14a, 347 (1972)Google Scholar
  35. (35).
    W.H. Robinson & H.K. Birnbaum, J. Appi. Phys. 37, 3754 (1966)Google Scholar
  36. (36).
    W.H. Robinson, J. Mater. Sci. 7, 115 (1972); also J.L. Talion & W.H. Robinson, Phil. Mag., 27, 985 (1973)Google Scholar
  37. (37).
    L.M. Brown, Phys. stat. sol. 1, 585 (1961)Google Scholar
  38. (38).
    T. Suzuki, A. Ikushima & M. Aoki, Acta Met. 12, 1231 (1964)Google Scholar
  39. (39).
    G. A. Bielig, J. Appl. Phys. 42, 4758 (1971)ADSCrossRefGoogle Scholar
  40. (40).
    K.L. Kliewer & J.S. Koehler, Phys. Rev. 157, 685 (1967)Google Scholar
  41. (41).
    4l) R.B. Gordon in Physical Acoustics 3 B, ed. W.P. Mason, Academic Press. New York (1965)Google Scholar
  42. (42).
    J.S. Nadeau, J. Appl. Phys. 35, 669 (1964)Google Scholar
  43. (43).
    G.A. Ermakov, E.V. Korovkin & Ya. M. Soifer, Sov. Phys. Solid State 16, 457, 1139 (1974)Google Scholar
  44. (44).
    I.M. Spitkovskii & N.A. Tsal’, Sov. Phys. Solid State 15, 233 (1973)Google Scholar
  45. (45).
    J. Polak, Crystal Latt. Defects 5, 155 (1974)Google Scholar

Copyright information

© Plenum Press, New York 1976

Authors and Affiliations

  • R. De Batist
    • 1
    • 2
  1. 1.S.C.K./C.E.N.MolBelgium
  2. 2.RUCAAntwerpBelgium

Personalised recommendations