Photoelectron Spectrometry: Experiments with Atoms

  • Manfred O. Krause
Part of the NATO Advanced Study Institutes Series book series (SPEPO, volume 18)


These lectures will present a brief review of the technique of Photoelectron Spectrometry and outline its capacity and potential to delineate the electronic structure and dynamics of atoms. Experimental results and, in particular, those photoelectron spectrometric experiments that give evidence of many-electron interactions in atoms will be discussed. I shall emphasize experiments that are especially instructive or promising for future work in the area of electron-electron correlation effects. This should introduce the student to the characteristics of the technique and the manifestations of many-electron interactions in photoelectron spectra, and at the same time, will familiarize him with the latest experimental results, since the most relevant data are of recent origin.


Electron Correlation Photoelectron Spectrum Configuration Interaction Double Ionization Electron Correlation Effect 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. (1).
    K. Siegbahn, C. Nordling, A. Fahlman, R. Nordberg, K. Hamrin, J. Hedman, G. Johansson, T. Bergmark, S. E. Karlsson, I. Lindgren and B. Lindberg, “ESCA-Ato mic, Molecular, and Solid State Structure Studied by Means of Electron Spectroscopy”, Nova Acta Regiae Soc. Upsal. (4) 20, Almqvist and Wiksells Boktryckeri AB, Uppsala (1967).Google Scholar
  2. (2).
    K. Siegbahn, C. Nordling, G. Johansson, J. Hedman, P.F. Heden, K. Hamrin, U. Gelius, T. Bergmark, L.O. Werme, R. Manne and Y. Baer, “ESCA Applied to Free Molecules”, North-Holland Publ., Amsterdam (1969).Google Scholar
  3. (3).
    K. Siegbahn, J. Electr. Spectr. 5, 4 (1974).CrossRefGoogle Scholar
  4. (4).
    K.D. Sevier, “Low Energy Electron Spectrometry” Wiley (Interscience), New York (1972).Google Scholar
  5. (5).
    M.O. Krause, “Electron Spectrometry” in Atomic Inner-Shell Processes, Vol.11, Academic Press, New York (1975).Google Scholar
  6. (6).
    M.E. Rudd and J.H. Macek, Case Stud. At. Phys. 3, 47 (1972).Google Scholar
  7. (7).
    T.A. Carlson, “Photo electron and Auger Spectroscopy”, Plenum Press, New York, 1975.CrossRefGoogle Scholar
  8. (8).
    T.A. Carlson, in “Invited Lectures and Progress Reports of the VIII Internat. Conf. on the Physics of Electronic and Atomic Collisions” eds. B.C. Cobić and M.V. Kurepa, Inst. of Phys., Beograd, Yugoslavia, 1973.Google Scholar
  9. (9).
    D.P. Spears, H.J. Fischbeck and T.A. Carlson, Phys. Rev. A9, 1603 (1974).ADSGoogle Scholar
  10. (10).
    M.O. Krause, T.A. Carlson and R.D. Dismukes, Phys. Rev. 170, 37 (1968).ADSCrossRefGoogle Scholar
  11. (11).
    M.O. Krause, J. Phys. (Paris) 32, C4–67 (1971).Google Scholar
  12. (12).
    M.O. Krause and F. Wuilleumier, J. Phys. B5, L143 (1972).ADSGoogle Scholar
  13. (13).
    F. Wuilleumier and M.O. Krause, Phys. Rev. A10, 242 (1974).ADSGoogle Scholar
  14. (14).
    U. Gelius, J. Electr. Spectr. 5, 985 (1974).CrossRefGoogle Scholar
  15. (15).
    T.A. Carlson, M.O. Krause and W.E. Moddeman, J. Phys. (Paris) 32, C4–76 (1971).CrossRefGoogle Scholar
  16. (16).
    S.P. Kowalczyk, L. Ley, R.L. Martin, F.R. McFeeley and D.A. Shirley, Faraday Disc. 60 (1975).Google Scholar
  17. (17).
    R.G. Houlgate, J.B. West, K. Codling and G. V. Marr, J. Phys. B7, L470 (1974).ADSGoogle Scholar
  18. (18).
    J. Berkowitz, J.L. Dehmer, Y.K. Kim and J.P. Desclaux, J. Chem. Phys. 61, 2556 (1974).ADSCrossRefGoogle Scholar
  19. (19).
    S. Süzer and D.A. Shirley, J. Chem. Phys. 61, 2481 (1974).ADSCrossRefGoogle Scholar
  20. (20).
    See the following citations and the lectures or seminars given at this School especially those by T.A. Carlson and J.A.R. Samson.Google Scholar
  21. (21).
    M.O. Krause, Adv. X-ray Anal. 16, 74 (1973); Phys. Fenn. 9, S1, 281 (1974).CrossRefGoogle Scholar
  22. (22).
    J.A.R. Samson and J.L. Gardner, Phys. Rev. Lett. 31, 1327 (1973).ADSCrossRefGoogle Scholar
  23. (23).
    See D. Dill, this volume.Google Scholar
  24. (24).
    J.A.R. Samson and A.F. Starace, J. Phys. B8, 1806 (1975).ADSGoogle Scholar
  25. (25).
    V. Schmidt, Phys. Lett. 45A, 63 (1973).Google Scholar
  26. (26).
    A. Niehaus and M.W. Ruf, Z. Physik 252, 84 (1972).ADSCrossRefGoogle Scholar
  27. (27).
    H. P. Kelly, Phys. Rev. A11 556 (1975).ADSGoogle Scholar
  28. (28).
    T.D. Thomas and R.W. Shaw, Jr., J. Electr. Spectr. 7, 1081 (1974).CrossRefGoogle Scholar
  29. (29).
    M.O. Krause, T.A. Carlson and W. E. Moddeman, J. Phys. (Paris) 32, C4–67 (1971).Google Scholar
  30. (30).
    D.J. Kennedy and S.T. Manson, Phys. Rev. A5, 227 (1972).ADSGoogle Scholar
  31. (31).
    P.G. Burke and K.T. Taylor, J. Phys. B16, 2620 (1975).ADSGoogle Scholar
  32. (32).
    F. Wuilleumier, Adv. X-ray Anal. 16, 63 (1973).CrossRefGoogle Scholar
  33. (33).
    E.J. McGuire, Sandia Lab. Report. SAND-75–0443 (Oct. 1975).Google Scholar
  34. (34).
    S. Lundquist and G. Wendin, J. Electr. Spectr. 5, 513 (1974).CrossRefGoogle Scholar
  35. (35).
    S. Süzer, S.T. Lee and D.A. Shirley, (to be publ., 1976).Google Scholar
  36. (36).
    H. Hotop (private communication).Google Scholar
  37. (37).
    B. Brehm and K. Höfler, Int. J. Mass Spectr. and Ion Phys. 18, 338 (1975); H. Hotop and D. Mahr, J. Phys. B8, L301 (1975).Google Scholar
  38. (38).
    S. Süzer, M.S. Banna and D.A. Shirley, J. Chem. Phys. 63, 3473 (1975).ADSCrossRefGoogle Scholar
  39. (39).
    These designations can be considered equivalent, although n ℓ, ε ℓ is the most general description, and the term shakeup could, but must not necessarily be restricted to cases where the sudden approximation (shakeoff theory) is valid. A third term, configuration interaction satellites, is also used to designate another variant of simultaneous excitation and ionization. An analogous consideration applies to shakeoff and ε ℓ, ε′ ℓ′ nomenclature. Note that, here as elsewhere, “shakeoff” is often used as a general term that included “shakeup”; similarly, “excitation” is often meant to include “ionization”.Google Scholar
  40. (40).
    S. Goudsmit and L. Gropper, Phys. Rev. 38, 225 (1931).ADSCrossRefGoogle Scholar
  41. (41).
    K. Codling, R.P. Madden and D.L. Ederer, Phys. Rev. 155, 26 (1967).ADSCrossRefGoogle Scholar
  42. (42).
    G.K. Wertheim and A. Rosencwaig, Phys. Rev. Lett. 26, 1179 (1971).ADSCrossRefGoogle Scholar
  43. (43).
    T.N. Chang and R.T. Poe, Phys. Rev. A 12, 1432 (1975);ADSCrossRefGoogle Scholar
  44. (43a).
    T.N. Chang, T. Ishihara and R.T. Poe, Phys. Lett. 27, 839 (1971).Google Scholar
  45. (44).
    M.O. Krause in “Proceedings of the 15th Annual Conf. on Mass Spectr. and Applied Topics”, ASTM- Conf. Denver (1967), p167.Google Scholar
  46. (45).
    T.A. Carlson, Phys. Rev. 156, 142 (1967).ADSCrossRefGoogle Scholar
  47. (46).
    Higher multipoles start to become discernible in the angular distribution at about 1.5 keV; M.O. Krause, Phys. Rev. 177, 151 (1969).ADSCrossRefGoogle Scholar
  48. (47).
    R.L. Martin and D.A. Shirley, Phys. Rev. A (to be publ. 1976).Google Scholar
  49. (48).
    T. Åberg, this volume, lecture I.Google Scholar
  50. (49).
    T.A. Carlson and C.W. Nestor Jr., Phys. Rev. A8, 2887 (1973);ADSGoogle Scholar
  51. (49a).
    T.A. Carlson, C.W. Nestor Jr., T.C. Tucker and F.B. Malik, Phys. Rev. 169, 27 (1968).ADSCrossRefGoogle Scholar
  52. (50).
    R. Manne and T. Åberg, Chem. Phys. Lett. 7, 282 (1970).ADSCrossRefGoogle Scholar
  53. (51).
    C.S. Fadley, J. Electr. Spectr. 5, 895 (1974).CrossRefGoogle Scholar
  54. (52).
    V. Schmidt, N. Sandner, H. Kuntzemüller, P. Dhez, F. Wuilleumier and E. Källne, Phys. Rev. A (to be publ. 1976); and Refs. therein.Google Scholar
  55. (53).
    F.W. Byron and C.J. Joachain, Phys. Rev. 164, 1 (1967).ADSCrossRefGoogle Scholar
  56. (54).
    V.L. Jacobs, Phys. Rev. A3, 289 (1971);Google Scholar
  57. (54a).
    V.L. Jacobs and P.G. Burke, J. Phys. B5, L67 (1972).ADSGoogle Scholar
  58. (55).
    J.W. Cooper and R.E. Lavilla, Phys. Rev. Lett. 25, 1745 (1972).ADSCrossRefGoogle Scholar
  59. (56).
    M. Ya Amusia, V.K. Ivanov, N.A. Cherepkov and L.V. Chernysheva, Phys. Lett. 40A, 361 (1972).Google Scholar
  60. (57).
    K. Codling, R.G. Houlgate, J.B. West and P.R. Woodruff, J. Phys. B, Lett. (to be publ. 1976).Google Scholar
  61. (58).
    R.G. Houlgate, J.B. West, K. Codling and G.V. Marr, J. Electr. Spectr. (to be publ. 1976).Google Scholar
  62. (59).
    J.A.R. Samson and J.L. Gardner, Phys. Rev. Lett. 33, 671 (1974).ADSCrossRefGoogle Scholar
  63. (60).
    M. Ya Amusia, N.A. Cherepkov and L.V. Chernysheva, Zh. Eksp. Teor. Fiz. 60, 160 (1971) [Sov. Phys. JETP 33, 90 (1971)].Google Scholar
  64. (61).
    C.D. Lin, Phys. Rev. A9, 181 (1974).ADSGoogle Scholar
  65. (62).
    J.W. Cooper and S.T. Manson, Phys. Rev. 177, 157 (1969).ADSCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1976

Authors and Affiliations

  • Manfred O. Krause
    • 1
  1. 1.Transuranium Research LaboratoryOak Ridge National LaboratoryOak RidgeUSA

Personalised recommendations