The Single Electron Model in Photoionization

  • John W. Cooper
Part of the NATO Advanced Study Institutes Series book series (SPEPO, volume 18)


The single electron model serves three purposes: (a) it provides a “zeroth order” approximation for the direct calculation of cross sections for photoionization and for other atomic processes, (b) it provides physical insight into the mechanisms that control these processes and (c) it forms the basis for the development of theoretical methods dealing with many electron correlations. All of the above aspects will be treated in the following discussion, but first the appropriate formulas for photoionization will be developed in order to show the relationship between the model and many electron treatments.


Total Cross Section Differential Cross Section Single Electron Central Potential Photoionization Cross Section 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    E. Fermi, Rev. Mod Phy. 4, 87 (1932).ADSCrossRefGoogle Scholar
  2. 2.
    W. Heitler, “The Quantum Theory of Radiation,” Oxford, 1954, third ed. (Secs. 17 and 28).MATHGoogle Scholar
  3. 3.
    H. A. Bethe and E. E. Salpeter, “Quantum Mechanics of One and Two Electron Systems,” Academic Press, New York, 1957 (Secs. 59, 61, 69, 72).Google Scholar
  4. 4.
    J. H. Scofield, Lawrence Livermore Lab. Rep. UCRL51326 (1973).Google Scholar
  5. 5.
    W. J. Veigele, Atomic Data 5, 51 (1973).ADSCrossRefGoogle Scholar
  6. 6.
    J.W. Cooper and S. T. Manson, Phys. Rev. 177, 157 (1969).ADSCrossRefGoogle Scholar
  7. 7.
    D. R. Hartree, “The Calculation of Atomic Structures,” Wiley & Sons, New York (1957) (Chaps. 3 and Sec. 6.6).MATHGoogle Scholar
  8. 8.
    F. Herman and S. Skillman, “Atomic Structure Calculations,” Prentice Hall, Englewood Cliffs, New Jersey (1963).Google Scholar
  9. 9.
    R. H. Pratt, A. Ron and H. K. Tseng, Rev. Mod. Phys. 45, 273 (1973) (Sec. 2.2, 3,6).ADSCrossRefGoogle Scholar
  10. 10.
    S. T. Manson and J. W. Cooper, Phys. Rev. 165, 126 (1968).ADSCrossRefGoogle Scholar
  11. 11.
    E. J. McGuire, Phys. Rev.” 175, 20 (1968).ADSCrossRefGoogle Scholar
  12. 12.
    F. Combet Farnoux, J. Phys. (Paris) 30, 521 (1969).CrossRefGoogle Scholar
  13. 13.
    D. J. Kennedy and S. T. Manson, Phys. Rev. A5, 217 (1972).ADSGoogle Scholar
  14. 14.
    A.E. Boyd, Planetary Space Sci. 12, 769 (1964).ADSGoogle Scholar
  15. 15.
    J. W. Cooper, Atomic Inner Shell Processes, Vol. 1, Academic Press, New York, 1975. (Sec. 3.2, 3.3, 3.4, 3.6)Google Scholar
  16. 16.
    A. Dalgarno and W. D. Davison, “Advances in Atomic and Molecular Physics,” Vol. 2, Academic Press, New York, 1966.Google Scholar
  17. 17.
    U. Fano and J. W. Cooper, Rev. Mod. Phys. 40, 441 (1968) (Sec. 2.1, 2.2, 2.4, 2.5, 4.2, 4.5, 4.8, 4.9, 5.1, 5.2, 5.3).ADSCrossRefGoogle Scholar
  18. 18.
    H. W. Wolff, K. Radier, B. Sonntag and R. Haensel, Z. Phys. 257, 353 (1972).ADSCrossRefGoogle Scholar
  19. 19.
    E. J. McGuire, Sandia Lab. Rep. No. SC-RR-721 (1970).Google Scholar
  20. 20.
    T. N. Chang, Physical Review, to be published.Google Scholar
  21. 21.
    M. J. Seaton, Mon. Not. Roy. Astro. Soc. 118, 504 (1958)MathSciNetADSMATHGoogle Scholar
  22. 21a.
    A. Burgess and M. J. Seaton, Mon. Not. Roy. Astro. Soc. 120, 121 (1960).MathSciNetADSMATHGoogle Scholar
  23. 22.
    J. W. Cooper, Phys. Rev. 128, 681 (1962).ADSCrossRefGoogle Scholar
  24. 23.
    M. J. Seaton, Proc. Phys. Soc. 88, 801 (1966).ADSCrossRefGoogle Scholar
  25. 24.
    K. T. Lu and U. Fano, Phys. Rev. A2, 81 (1970).ADSGoogle Scholar
  26. 25.
    P. G. Burke and W. D. Robb, “Advances in Atomic and Molecular Physics,” to be published, 1975.Google Scholar
  27. 26.
    R. D. Hudson and V. L. Carter, J. Opt. Soc. Am. 57, 651, 1471 (1967).ADSCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1976

Authors and Affiliations

  • John W. Cooper
    • 1
  1. 1.National Bureau of StandardsUSA

Personalised recommendations