The Close-Coupling Methods Applied to Photoionisation of Neutral Atoms and Positive Ions

  • Françoise Combet Farnoux
Part of the NATO Advanced Study Institutes Series book series (SPEPO, volume 18)


As Professor Fano and Dr. Inokuti mentioned it in their lectures, close-coupling functions are usually used to describe the electron scattering process. But. such continuum wave functions can describe both an ion scattering an electron (calculations of electron impact cross sections) and the final states appropriate to photoionisation. However, close-coupling functions have only been introduced recently in the calculation of photoionisation cross sections at low energies: it was only in 1967 that Henry and Lipsky1 provided an exact formulation of the photoionisation process within the framework of the dipole approximation, in LS coupling, when the coupling between the final state channels was introduced. In this talk, I will essentially develop three points. First, I shall recall briefly how the close-coupling equations are derived in the scattering process formulation; second, I shall show how the close-coupling continuum wave functions of the scattering process can be introduced in multichannel photoionisation. Then, I shall emphasize those methods of solving the close-coupling equations which have been used to write the recently available computer codes for the calculation of electron scattering and photoionisation cross sections of atomic systems.


Isoelectronic Series Continuum Wave Function Impact Cross Section Ground State Term Outgoing Spherical Wave 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1-.
    R. J. W. Henry and L. Lipsky, Phys. Rev. 153, 51 (1967)ADSCrossRefGoogle Scholar
  2. 2-.
    M.J. Seaton, Phil. Trans. Roy. Soc. A 245, 469 (1953)ADSMATHCrossRefGoogle Scholar
  3. 3-.
    K. Smith, R. J. W. Henry, P. G. Burke, Phys. Rev. 147, 21 (1966)ADSCrossRefGoogle Scholar
  4. 4-.
    A. Burgess and M.J. Seaton, Mon.Not.R.Astr.Soc.120,121 (1960)MathSciNetADSMATHGoogle Scholar
  5. 5-.
    K. Smith,”The Physics of Electronic and Atomic Collisions” edited by T.R. Govers and F.J. de Heer (North Holland 1972)Google Scholar
  6. 6-.
    P.G. Burke and M.J. Seaton, Meth.Comp. Phys. 10,1 (1971)Google Scholar
  7. 7-.
    M.J. Conneely, L. Lipsky, K. Smith, P.G. Burke, R. J.W. Henry, Comp. Phys. Comm. 1, 306 (1970)ADSCrossRefGoogle Scholar
  8. 8-.
    E. Clementi, IBM J. Res. Develop. 9, 2 (1965)CrossRefGoogle Scholar
  9. 9-.
    K. Smith, R.J.W. Henry and P.G. Burke, Phys. Rev. 157, 51 (1967)ADSCrossRefGoogle Scholar
  10. 10-.
    K. Smith, “The calculation of Atomic Collision Processes” (Wiley-Interscience, New York, 1971)Google Scholar
  11. 11-.
    S. Ormonde and M.J. Conneely, Phys. Rev. A4, 1432 (1971)ADSGoogle Scholar
  12. 12-.
    M.J. Conneely, K. Smith and L. Lipsky, J. Phys. B (Atom. and Mol. Phys.) 3, 493 (1970)ADSCrossRefGoogle Scholar
  13. 13-.
    R.J.W. Henry, Astrophy. Jour. 161, 1153 (1970)ADSCrossRefGoogle Scholar
  14. 14-.
    R.D. Chapman and R.J.W. Henry, Astrophys. Jour. 168, 169 (1971)ADSCrossRefGoogle Scholar
  15. 15-.
    R.D. Chapman and R.J.W. Henry, Astrophys.Jour. 173, 243 (1972)ADSCrossRefGoogle Scholar
  16. 16-.
    F. Combet Farnoux and M. Lamoureux, J. Phys. B. In pressGoogle Scholar
  17. 17-.
    M.J. Seaton, J. Phys.B (Atom. Mol. Phys.) 7, l8l7 (1974)CrossRefGoogle Scholar
  18. 18-.
    M.J. Seaton and P.M.H. Wilson, J.Phys.B. (Atom. Mol. Phys.) 5, L1 (1972)ADSCrossRefGoogle Scholar
  19. 19-.
    T.M. Luke, J. Phys.B (Atom. Mol. Phys.) 6, 30 (1973)ADSCrossRefGoogle Scholar
  20. 20-.
    J. Dubau and J. Wells, J. Phys.B. (Atom. Mol. Phys.) 6, L3l(l973)Google Scholar
  21. 21-.
    E.P. Wigner and L. Eisenbud, Phys. Rev. 72, 29 (1947)ADSCrossRefGoogle Scholar
  22. 22-.
    K.A. Berrington, P.G. Burke, J.J. Chang, A.T. Chivers, W.D. Robb and K.T. Taylor, Comp. Phys. Comm. 8, 149 (1974)ADSCrossRefGoogle Scholar
  23. 23-.
    P.G. Burke, A. Hibbert and W.D. Robb, J. Phys. B (Atom. and Mol. Phys.) 4, 153 (1971)ADSCrossRefGoogle Scholar
  24. 24-.
    D.C.S. Allison, P.G. Burke and W. D. Robb, J. Phys. B. (Atom. Mol. Phys.) 5, 55 (1972)ADSCrossRefGoogle Scholar
  25. 25-.
    P.G. Burke and K.T. Taylor, J. Phys. B. 16, 2620 (1975)ADSCrossRefGoogle Scholar
  26. 26-.
    M. le Dourneuf, Vo Ky Lan, P.G. Burke and K.T. Taylor, J. Phys. B. 16, 2640 (1975)CrossRefGoogle Scholar
  27. 27-.
    J.A.R. Samson, J.Opt. Soc. Am. 55, 935 (1965)ADSGoogle Scholar
  28. 28-.
    M. Ya Amusia, N.A. Cherepkhov and L.V. Chernysheva, Sov. Phys. J.E.T.P. 33, 90 (1971)Google Scholar
  29. 29-.
    A.F. Starace, Phys. Rev. 2A, 118 (1970)ADSGoogle Scholar
  30. 30-.
    C.D. Lin, Phys. Rev. 9A, l8l (1974)Google Scholar
  31. 31-.
    F. Herman and S. Skillman, “Atomic Structure Calculations” (1963 — Prentice-Hall Inc. Englewood Cliffs, New Jersey)Google Scholar

Copyright information

© Plenum Press, New York 1976

Authors and Affiliations

  • Françoise Combet Farnoux
    • 1
  1. 1.E R “Spectroscopie Atomique et Ionique”OrsayFrance

Personalised recommendations