The Quantum Defect Theory Approach

  • Anthony F. Starace
Part of the NATO Advanced Study Institutes Series book series (SPEPO, volume 18)


The Quantum Defect Theory (QDT) is a method of using the analytically known properties of excited electrons moving in a pure Coulomb field to describe atomic photoabsorption and electron-ion scattering processes in terms of a few parameters. These parameters may be determined either from experimental data or from ab initio theoretical calculations. In addition, they are usually nearly independent of energy in the threshold energy region (i.e., within a few eV of the atomic ionization threshold). Thus the determination of these parameters at any single energy suffices to predict the variation with energy of numerous atomic properties in the threshold energy region such as total and partial photoionization or scattering cross sections, photoelectron asymmetry parameters, discrete line strengths, autoionization profiles, etc. These properties are often very strongly energy-dependent and difficult to measure or to calculate by other methods. Yet all these phenomena, according to the QDT, depend on only a few essential parameters which represent the proper interface between theory and experiment. The determination of these parameters should thus be the goal of both theory and experiment rather than the calculation or measurement of the various phenomena dependent on these parameters.


Oscillator Strength Inner Core Excited Electron Quantum Defect Rydberg Series 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. J. Seaton, Comments on Atomic and Molecular Physics II, 37 (1970).Google Scholar
  2. 2.
    U. Fano, J. Opt. Soc. Am 65, 979 (1975).CrossRefGoogle Scholar
  3. 3.
    O. Bely, Proc. Phys. Soc. (London) 88, 833 (1966).ADSCrossRefGoogle Scholar
  4. 4.
    G. Breit, Handbuch der Physik XLI/1, 1 (1959).MathSciNetADSCrossRefGoogle Scholar
  5. 5.
    P. G. Burke and W. D. Robb, Adv. Atomic Mol. Phys. (to be published).Google Scholar
  6. 6.
    C. M. Lee, Phys. Rev. A 10, 584 (1974).ADSCrossRefGoogle Scholar
  7. 7.
    J. L. Üehmer and U. Fano, Phys. Rev A 2, 304 (1970).MathSciNetADSCrossRefGoogle Scholar
  8. 8.
    U. Fano, Phys. Rev. A 2, 353 (1970).MathSciNetADSCrossRefGoogle Scholar
  9. 9.
    M. J. Seaton, Compt. Rend. 240, 1317 (1955).Google Scholar
  10. 10.
    M. J. Seaton, Mon. Not. Roy. Astron. Soc. 118, 504 (1958).MathSciNetADSMATHGoogle Scholar
  11. 11.
    The data presented in Table I were obtained by interpolating the values tabulated by F. Herman and S. Skillman, Atomic Structure Calculations (Prentice-Hall, Englewood Cliffs, New Jersey, 1963).Google Scholar
  12. 12..
    U. Fano and J. W. Cooper, Rev. Mod. Phys. 40, 441 (1968), §2.4.Google Scholar
  13. 13.
    A. F. Starace, J. Phys. B 6, 76 (1973).ADSCrossRefGoogle Scholar
  14. 14.
    C. M. Lee and K. T. Lu, Phys. Rev. A 8, 1241 (1973).ADSCrossRefGoogle Scholar
  15. 15.
    K. T. Lu, Phys. Rev. A 4, 579 (1971).ADSCrossRefGoogle Scholar
  16. 16.
    K. T. Lu and U. Fano, Phys. Rev. A 2, 81 (1970).ADSCrossRefGoogle Scholar
  17. 17.
    A. R. P. Rau and U. Fano, Phys. Rev. A 4, 1751 (1971).ADSCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1976

Authors and Affiliations

  • Anthony F. Starace
    • 1
  1. 1.Behlen Laboratory of PhysicsThe University of NebraskaLincolnUSA

Personalised recommendations