A New Experimental Study of Multiple Ionization in Noble Gases by Electron and Photon Impact

  • V. Schmidt
Part of the NATO Advanced Study Institutes Series book series (SPEPO, volume 18)


The main topics of this summer school are effects which are due to electron correlations in atoms. One of the most powerful methods used to study the influence of electron correlations is multiple ionization of rare gases produced by electron or photon impact. This is due to the fact that the operator which causes the ionization process is a one-particle operator. Therefore, a theory that takes into account neither electron correlation nor rearrangement of the electron orbitals after the ionization process will allow only singly charged ions. When secondary processes as for instance the Auger effect are excluded, then the appearance of multiply charged ions is due to electron correlations and rearrangement of the electrons. This clear statement is true only for the photon impact experiment. For electron impact, it is valid only in first Born approximation and even then the large range of momentum transfers in the collision process makes the interpretation more difficult.


Electron Correlation Ionization Cross Section Multiple Ionization Dipole Matrix Element Intrinsic Error 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1).
    M.J. van der Wiel, Th.M. El-Sherbini and L. Vriens, Riysica 42 (1969) 411.ADSGoogle Scholar
  2. 2).
    T.A. Carlson, Phys. Rev. 156 (1967) 142.ADSCrossRefGoogle Scholar
  3. 3).
    M.J. van der Wiel and G. Wiebes, Physica 53 (1971) 225ADSCrossRefGoogle Scholar
  4. 3a).
    M.J. van der Wiel and G. Wiebes, Physica 54 (1971) 411.ADSCrossRefGoogle Scholar
  5. 4).
    F.W. Byron and C.J. Joachain, Phys. Rev. 164 (1967) 1.ADSCrossRefGoogle Scholar
  6. 5).
    R.L. Brown, Phys. Rev. A1 (1970) 586.ADSGoogle Scholar
  7. 6).
    T.N. Chang, T. Ishihara and R.T. Poe, Phys. Rev. Lett. 27 (1971) 838.ADSCrossRefGoogle Scholar
  8. 7).
    T.N. Chang and R.T. Poe, Phys. Rev. A12, 1432 (1975).ADSGoogle Scholar
  9. 8).
    V. Schmidt, N. Sandner and H. Kuntzemüller, submitted to Phys. Rev. A.Google Scholar
  10. 9).
    J.P. Ziesel, J. Chim. phys. 62 (1965) 328.Google Scholar
  11. 10).
    A. Gaudin et R. Hagemann, J. Chim. Phys. 64 (1967) 1209.Google Scholar
  12. 11).
    B.L. Schram, A.J.H. Boerboom and J. Kistemaker, Physica 32 (1966) 185.ADSCrossRefGoogle Scholar
  13. 12).
    B.L. Schram, Physica 32 (1966) 197.ADSCrossRefGoogle Scholar
  14. 13).
    B. Adamczyk, A.J.H. Boerboom, B.L. Schram and J. Kistemaker, J. Chem. Phys. 44 (1966) 4640.ADSCrossRefGoogle Scholar
  15. 14).
    P. Jaeglé, J. Physique 24 (1963) 179CrossRefGoogle Scholar
  16. 14a).
    P. Jaeglé, Comptes Rendus 259 (1964) 533 and 4556.Google Scholar
  17. 15).
    P. Dhez, P. Jaeglé and F. Wuilleumier, in Vacuum UV Radiation Physics, ed. by E.E. Koch, R. Haensel and C. Kunz, Pergamon Vieweg (1974) 788.Google Scholar
  18. 16).
    V. Schmidt, N. Sandner, H. Kuntzemüller, P. Dhez, F. Wuilleumier and E. Källne, submitted to Phys. Rev. A.Google Scholar
  19. 17).
    J.A.R. Samson and G.N. Haddad, Phys. Rev. Lett. 33 (1974) 875.ADSCrossRefGoogle Scholar
  20. 18).
    I thank Dr. M. van der Wiel very much for the early communication of his new results.Google Scholar
  21. 19).
    M. Ya. Amusia, VIII ICPEAC, ed. by B.C. Cobic and M.V. Kurepa, Inst, of Phys., Beograd, Yugoslavia (1973) 171.Google Scholar
  22. 20).
    W.D. West and G.V. Marr, to be published in Proc. Roy. Soc.Google Scholar
  23. 21).
    G.S. Lightner, R.J. van Brunt and D. Whitehead, Phys. Rev. A4 (1971) 602.ADSGoogle Scholar

Copyright information

© Plenum Press, New York 1976

Authors and Affiliations

  • V. Schmidt
    • 1
  1. 1.Fakultät für PhysikUniversität Freiburg78 FreiburgW.-Germany

Personalised recommendations