Correlation Effects in X Ray Emission Spectroscopy

  • Jean Pierre Briand
Part of the NATO Advanced Study Institutes Series book series (SPEPO, volume 18)


X ray emission spectroscopy was, in the past, the unique method of study of atomic inner shells. In the last ten years, many new methods have been developed to study as well atomic inner shell properties as atomic collision mechanisms: x ray photoelectron spectroscopy (XPS), precision Auger electron spectroscopy (AES), energy loss spectrometry, heavy ions bombardment, charge spectroscopy... The development of these new techniques, namely the photoelectron spectroscopy, led in 1965 to the direct observation, by Carlson and Krause (1) (2), of the multiexcitation and multiionization processes in photon absorbtion. At the same time the multiionization theory (shake theory) was developed by Carlson et al. (3) and by Aberg (4) (5) and there was then a renewal of interest for inner shell atomic properties. The x ray spectrometry received then a new impulse; the old data about x ray satellites were reviewed in the scope of the shake theory and numerous new weak lines corresponding to new processes were discovered: Radiative Auger satellites (RAE) (6), hypersatellites (7), Radiative Electron Rearrangment satellites (RER) (8).heavy ions satellites (9), multiplet splitting “ satellites “... Most of these new results allowed a better understanding of multielectron interactions in atoms.


Correlation Effect Ionization Probability Double Ionization Diagram Line Multiplet Splitting 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. (1).
    T.A. Carlson, Phys. Rev. 156, 142 (1967).ADSCrossRefGoogle Scholar
  2. (2).
    M.O. Krause, T. A. Carlson and R.D. Dismukes, Phys. Rev. 170, 37 (1968).ADSCrossRefGoogle Scholar
  3. (3a).
    T.A. Carlson, C.W. Nestor and J.C. Tucker, Phys. Rev. 169, 168 (1968).CrossRefGoogle Scholar
  4. (3b).
    T.A. Carlson and C.W. Nestor Jr., Phys. Rev. A8, 2887 (1973).ADSGoogle Scholar
  5. (4).
    T. Åberg, Phys. Rev. 156, 35 (1967).ADSCrossRefGoogle Scholar
  6. (5).
    T. Aberg, Ann. Acad. Scient. Fenn. 308, 1 (1969).Google Scholar
  7. (6).
    T. Aberg, Atomic Innershell Processes, B. Crasemann ed. vol.1 Academic Press, New York (1975).Google Scholar
  8. (7).
    J. P. Briand, A. Touati, M. Frilley, P. Chevallier, A. Johnson, J.P. Rozet, M. Tavernier, S. Shafroth and M.O. Krause, J. Phys. B, (1976) to be published.Google Scholar
  9. (8).
    K.A. Jamison, J.M. Hall and P. Richard, J. Phys. B8 (1975) to be published.Google Scholar
  10. (9).
    P. Richard, Atomic Innershell Processes, B. Crasemann ed. vol. 1 Academic Press, New York (1975).Google Scholar
  11. (10).
    M.O. Krause, F. Wuilleumier and C. W. Nestor, Phys. Rev. A6, 871 (1972).ADSGoogle Scholar
  12. (11).
    J.P. Briand et al., to be published (described in oral talk).Google Scholar
  13. (12).
    L.O. Werme, B. Grennberg, J. Nordgren, C. Nordling and K. Siegbahn, Phys. Rev. Lett. 30, 523 (1973).ADSCrossRefGoogle Scholar
  14. (13).
    T. Aberg, International Symposium: X ray spectra and electronic structure in matter, ed. Faesslerand Wiech, München 1972, p.1.Google Scholar
  15. (14).
    D. Coster and M.J. Druyvesteyn, Z. Phys. 40, 765 (1927).ADSCrossRefGoogle Scholar
  16. (15).
    A. Migdal, J. Phys. USSR 4, 449 (1941).Google Scholar
  17. (16).
    E. Feinberg, J. Phys. USSR 4, 423 (1941).Google Scholar
  18. (17).
    V. P. Sachenko and V.F. Demekhin, J.E.T.P. 22, 532 (1966).Google Scholar
  19. (18).
    H.W. Schnopper, Phys. Rev. 154. 118 (1967).ADSCrossRefGoogle Scholar
  20. (19).
    O. Keski-Rahkonen, Physica Scripta 7, 173 (1973).ADSCrossRefGoogle Scholar
  21. (20).
    H.E. Kennardand E. Ramberg, Phys. Rev. 46, 1040 (1934).ADSCrossRefGoogle Scholar
  22. (21).
    Z. Horak, Proc. Phys. Soc. A77, 980 (1961).ADSCrossRefGoogle Scholar
  23. (22).
    G. Graeffe, J. Sivola, J. Utriainen, M. Linkoaho and T. Åberg, Phys. Lett. 29A, 464 (1969).Google Scholar
  24. (23).
    N. Cue and W. Scholz, Phys. Rev. Lett. 32, 1397 (1974).ADSCrossRefGoogle Scholar
  25. (24).
    M.O. Krause and J.G. Ferreira, J. Phys. B8, 2007 (1975).Google Scholar
  26. (25).
    J.P. Briand, P. Chevallier, M. Tavernier, J. de Phys. Parish 32 C4, 165 (1971).Google Scholar
  27. (26).
    J.P. Briand, P. Chevallier, M. Tavernier, J.P. Rozet, Phys. Rev. Lett. 27, 777 (1971).ADSCrossRefGoogle Scholar
  28. (27).
    J. P. Briand, P. Chevallier, A. Johnson, J.P. Rozet, M. Tavernier and A. Touati, Phys. Lett. 49A, 51 (1974).Google Scholar
  29. (28).
    J.P. Briand, P. Chevallier, A. Johnson, J.P. Rozet, M. Tavernier and A. Touati, Phys. Fenn. 9 S1, 409 (1974).Google Scholar
  30. (29).
    J.P. Desclaux, C. Briançon, J.P. Thibaud and R. J. Wallen, Phys. Rev. Lett. 32, 447 (1974).ADSCrossRefGoogle Scholar
  31. (30).
    J. Utriainen, M. Linkoaho, E. Rantavuori, T. Aberg and G. Graeffe, Z. Naturf. 23a, 1178 (1968).Google Scholar

Copyright information

© Plenum Press, New York 1976

Authors and Affiliations

  • Jean Pierre Briand
    • 1
  1. 1.Université Pierre et Marie Curie and Institut du RadiumParis Cedex 05France

Personalised recommendations