Chemisorption Theory, Electronic Structure, and Reactivity of Metal Surfaces

  • T. B. Grimley
Part of the NATO Advanced Study Institutes Series book series (NSSB, volume 16)


The technique of expanding a wavefunction in terms of a complete set of functions (a basis set) is familiar in formal quantum theory. It is encountered in Rayleigh-Schrödinger perturbation theory, and in the proof of the Variation Theorem for example. The use of an incomplete, and non-orthogonal basis set is familiar to all students of quantum chemistry in the linear combination of atomic orbitals molecular orbital (LCAOMO) scheme. The wavefunction being represented in this way may be either a one-electron state (an orbital), or a many-electron function representing the true states (ground or excited) of a complicated many-electron system. In the former case one has of course ultimately to build up many-electron states by allocating electrons to orbitals. In chemisorption theory we encounter both approaches, but the approach which begins by searching for the one-electron states of the interacting system adsorbate + substrate, i.e., the molecular orbital (MO) scheme, is certainly the more familiar, as indeed it is in molecular quantum mechanics. It is however interesting to observe that the other approach of expressing the many-electron ground state of the interacting system in terms of the many-electron states of the non-interacting adsorbate and substrate, i.e., the Heitler-London (HL) scheme, was used in the first serious work in chemisorption theory by Toya(1,2) just as it had been used in the early work on molecular binding by Heitler and London(3), Ireland(4), and others. We refer to Toya’s work later (section 1.10), but first, because its concepts are generally familiar, and easily visualized, we consider the MO theory.


Density Matrix Ground State Energy Secular Equation Atomic Sphere Molecular Quantum Mechanic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. (1).
    T. Toya, J. Res. Inst. Catal. Hokkaido Univ., 6, 308 (1958)Google Scholar
  2. (2).
    T. Toya, J. Res. Inst. Catal. Hokkaido Univ., 8, 209 (1960)Google Scholar
  3. (3).
    W. Heitler and F. London, Z. Phys., 44, 455 (1927)CrossRefGoogle Scholar
  4. (4).
    C.E. Ireland, Phys. Rev. 43, 329 (1933)CrossRefGoogle Scholar
  5. (5).
    C.A. Coulson, Physical Chemistry, H. Eyring, D. Henderson and W. Jost, eds., Vol. 5, Academic Press, New York, (1970)Google Scholar
  6. (6).
    T.B. Grimley, Prog. in Surf. and Membrane Sci., 9, 48 (1975)Google Scholar
  7. (7).
    W.A. Harrison, Solid State Theory, McGraw-Hill, New York, (1970) p. 480Google Scholar
  8. (8).
    T.B. Grimley, J. Phys. C: Solid St. Phys. 3, 1934 (1970)CrossRefGoogle Scholar
  9. (9).
    C.P.J. Newton, Thesis, Liverpool, (1975)Google Scholar
  10. (10).
    O. Gunnarson and H. Hjelmberg,Physica Scripta(Sweden) 11, 97 (1975)CrossRefGoogle Scholar
  11. (11).
    T.B. Grimley, Proc. Int. School of Physics “Enrico Fermi” Course LVIII, to be publishedGoogle Scholar
  12. (12).
    T.B. Grimley, and C.P.J. Newton, Phys. Lett.,to be publishedGoogle Scholar
  13. (13).
    V. Heine, Proc. Phys. Soc., (London) 81, 300 (1963)CrossRefGoogle Scholar
  14. (14).
    V. Heine, Surface Sci., 2, 1 (1964)CrossRefGoogle Scholar
  15. (15).
    F. Forstmann, Z., Physik, 235, 69 (1970)CrossRefGoogle Scholar
  16. (16).
    V. Hoffstein, Surface Sci, 32, 149 (1972)CrossRefGoogle Scholar
  17. (17).
    W.H. Harrison, Pseudopotentials in the Theory of Metals, Benjamin, New York (1966)Google Scholar
  18. (18).
    D.S. Boudreaux, Surface Sci., 28, 344 (1971)CrossRefGoogle Scholar
  19. (19).
    J.H. Wilkinson, The Algebraic Eigenvalue Problem, Clarendon Press, Oxford, (1965)Google Scholar
  20. (20).
    W. Shockley, Phys. Rev., 56, 317 (1939)CrossRefGoogle Scholar
  21. (21).
    P.W. Anderson, Phys. Rev., 124, 41 (1961)CrossRefGoogle Scholar
  22. (22).
    S. Raimes, Many Electron Theory, North-Holland, Amsterdam (1972)Google Scholar
  23. (23).
    A.L. Fetter and J.D. Walecka, Quantum Theory of Many-Particle Systems, McGraw-Hill, New York (1971)Google Scholar
  24. (24).
    J.R. Schrieffer and R. Gomer, Surface Sci., 25, 315 (1971)CrossRefGoogle Scholar
  25. (25).
    P.O. Löwdin, J. Chem. Phys., 19, 1396 (1951)CrossRefGoogle Scholar
  26. (26).
    K.F. Wojciechowski, Act. Phys. Polon. 29, 119 (1966)Google Scholar
  27. (27).
    R.H. Paulson and J.R. Schrieffer, Surface Sci., 48, 329 (1975)CrossRefGoogle Scholar
  28. (28).
    T.B. Grimley, Molecular Processes on Solid Surfaces, E. Drauglis, R.D. Gretz and R.I. Jaffee, eds., p. 181, McGraw-Hill, New York, (1969)Google Scholar
  29. (29).
    H.D. Hagstrum and G.E. Becker, J. Chem. Phys. 54, 1015 (1971)CrossRefGoogle Scholar
  30. (30).
    J.W. Gadzuk, Phys. Rev., B10, 5030 (1974)CrossRefGoogle Scholar
  31. (31).
    T.B. Grimley, and C. Pisani, J. Phys. C., Solid State Phys. 7, 2831 (1974)CrossRefGoogle Scholar
  32. (32).
    C.C.J. Roothaan, Rev. Mod. Phys., 23, 69 (1951)CrossRefGoogle Scholar
  33. (33).
    C.C.J. Roothaan, Rev. Mod. Phys., 32, 179 (1960)CrossRefGoogle Scholar
  34. (34).
    E. Clementi, Proc. Nat. Acad. Sci. U.S.A., 69, 2942 (1972)CrossRefGoogle Scholar
  35. (35).
    M.J.S. Dewar, Wave Mechanics, W.C. Price, S.S. Chissick and T. Ravensdale, eds., p. 239, Butterworths, London (1973)Google Scholar
  36. (36).
    J.C. Slater and K.H. Johnson, Phys. Rev., B5, 844 (1972)CrossRefGoogle Scholar
  37. (37).
    J.C. Slater, Advan. Quantum Chemistry, 6, 1, (1972)CrossRefGoogle Scholar
  38. (38).
    K.H. Johnson, Advan. Quantum Chemistry, 7, 143 (1973)CrossRefGoogle Scholar
  39. (39).
    K. Schwarz, Phys. Rev., B5, 2466 (1972)CrossRefGoogle Scholar
  40. (40).
    P. Weinberger and D.D. Konowalow, Internat. J. Quantum Chem., 75, 353 (1973)Google Scholar
  41. (41).
    S.J. Niemczyk, J. Vac. Sci., Technol., 12, 246 (1975)CrossRefGoogle Scholar
  42. (42).
    I.P. Batra and O. Robaux, J. Vac. Sci. Technol., 12, 242 (1975)CrossRefGoogle Scholar
  43. (43).
    R.P. Messmer, Battelle Colloquium: The Physical Basis for Heterogeneous Catalysis, to be publishedGoogle Scholar
  44. (44).
    R.O. Jones, Surface Sci., to be publishedGoogle Scholar
  45. (45).
    E.J. Dyson, Phys. Rev., 75, 486 (1949)CrossRefGoogle Scholar
  46. (46).
    E.J. Dyson, Phys. Rev., 75, 1736 (1949)CrossRefGoogle Scholar
  47. (47).
    E. Clementi and D.L. Raimondi, J. Chem. Phys., 38, 2686 (1963)CrossRefGoogle Scholar
  48. (48).
    G. Wannier, Phys. Rev., 52, 191 (1937)CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1976

Authors and Affiliations

  • T. B. Grimley
    • 1
  1. 1.Donnan LaboratoriesUniversity of LiverpoolUK

Personalised recommendations