Advertisement

The Chemical Production of Excited Species

  • B. A. Thrush
Part of the NATO Advanced Study Institutes Series book series (NSSB, volume 12)

Abstract

The mechanism of formation of electronically excited species in elementary gas reactions is discussed in some detail. It is shown that three-body recombination is normally a more efficient source of electronically excited molecules than two-body association. The formation of electronically excited molecules in atom transfer reactions is considered in terms of the potential surfaces involved and their intersections. A brief comparison is made with the mechanisms of chemiluminescence in organic reactions and biological systems.

Keywords

Excited Molecule Dissociation Limit Excited Species Excited Product Atom Transfer Reaction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R.G.W. Norrish, this volume.Google Scholar
  2. 2.
    T. Carrington and J.C. Polanyi, in MTP International Review of Science, Vol. 9 (J.C. Polanyi, ed), Butterworths, London, pp. 135–171 (1972).Google Scholar
  3. 3.
    D.R. Bates, Mon. Not. R. Astr. Soc. 111, 303 (1951).MathSciNetADSMATHGoogle Scholar
  4. 4.
    G. Herzberg, Spectra of Diatomic Molecules, Van Nostrand, New York (1950).Google Scholar
  5. 5.
    H.B. Palmer, J. Chem. Phys. 26, 648 (1957).ADSCrossRefGoogle Scholar
  6. 6.
    R.K. Boyd, G. Burns, T.R. Lawrence and J.H. Lippiatt, J. Chem. Phys. 42, 3804 (1968).ADSCrossRefGoogle Scholar
  7. 7.
    H.B. Palmer and R.A. Carabetta, J. Chem. Phys. 42, 2466 (1968).CrossRefGoogle Scholar
  8. 8.
    F.H. Mies and A.L. Smith, J. Chem. Phys. 45, 994 (1966).ADSCrossRefGoogle Scholar
  9. 9.
    K.W. Chow and A.L. Smith, J. Chem. Phys. 15, 56 (1971).Google Scholar
  10. 10.
    K.M. Sando, Molec. Phys. 21, 439 (1971).ADSCrossRefGoogle Scholar
  11. 11.
    R.C. Michaelson and A.L. Smith, Chem. Phys. Lett., 6, 1 (1970).ADSCrossRefGoogle Scholar
  12. 12.
    R. Turner, Phys. Rev., 158, 121 (1967).ADSCrossRefGoogle Scholar
  13. 13.
    D.H. Stedman and D.W. Setser, Prog. React. Kin. 6, 193 (1971).Google Scholar
  14. 14.
    A.W. Johnson and J.B. Gerardo, J. Chem. Phys. 59, 1738 (1973).ADSCrossRefGoogle Scholar
  15. 15.
    E.E. Nikitin, Theory of Elementary Atomic and Molecular Processes, Moscow (1970).Google Scholar
  16. 16.
    I. Kovacs, Rotational Structure in the Spectra of Diatomic Molecules, Hilger, London (1969).Google Scholar
  17. 17.
    S. Durmaz and J.N. Murrell, Trans. Faraday Soc. 67, 3395 (1971).CrossRefGoogle Scholar
  18. 18.
    R.A. Young and R.L. Sharpless, Disc. Faraday Soc. 33, 228 (1962).CrossRefGoogle Scholar
  19. 19.
    D. Kley, Habilitationsschrift, Univ. of Bonn (1973).Google Scholar
  20. 20.
    M. Mandelman, T. Carrington and R.A. Young, J. Chem. Phys. 58, 84 (1973).ADSCrossRefGoogle Scholar
  21. 21.
    R.W.F. Gross and N. Cohen, J. Chem. Phys. 48, 2582 (1968).ADSCrossRefGoogle Scholar
  22. 22.
    K.H. Becker, E.H. Fink, W. Groth, W. Jud and D. Kley, Faraday Disc. Chem. Soc.,. 22, 35 (1972).Google Scholar
  23. 23.
    M.F. Golde and B.A. Thrush, Rep. Prog. Phys., 36, 1285 (1973).ADSCrossRefGoogle Scholar
  24. 24.
    R.W. Fair and B.A. Thrush, Trans. Faraday Soc.,. 615, 1208 (1969).CrossRefGoogle Scholar
  25. 25.
    K.H. Becker, W. Groth and D. Thran, Chem. Phys. Lett. 1.5., 215 (1972).Google Scholar
  26. 26.
    P.M. Solomon and W. Klemperer, Astrophys. J. 178, 389 (1972).ADSCrossRefGoogle Scholar
  27. 27.
    S. Ticktin, G. Spindler and H.I. Schiff, Disc. Faraday Soc. 44, 218 (1967).CrossRefGoogle Scholar
  28. 28.
    M.F. Golde and B.A. Thrush, Faraday Disc. Chem. Soc.. 22, 52 (1972).Google Scholar
  29. 29.
    E.M. Gartner and B.A. Thrush, Proc. Roy. Soc. in press (1975).Google Scholar
  30. 30.
    M.F. Golde and B.A. Thrush, Proc. R. Soc. A 330, 79, 109, 120 (1972).Google Scholar
  31. 31.
    R.J. Browne and E.A. Ogryzlo, J. Chem. Phys.,, 5774 (1970).Google Scholar
  32. 32.
    M.A.A. Clyne, J.A. Coxon and A.R. Woon Fat, Faraday Disc. Chem. Soc. 5.13., 82 (1972).Google Scholar
  33. 33.
    T.M. Sugden, Ann. Rev. Phys. Chem. 13, 369 (1962).ADSCrossRefGoogle Scholar
  34. 34.
    P.J. Padley, Trans. Faraday Soc., 56, 449 (1960).CrossRefGoogle Scholar
  35. 35.
    C.G. James and T.M. Sugden, Proc. R. Soc. A248, 238 (1958).CrossRefGoogle Scholar
  36. 36.
    L.F. Phillips and T.M. Sugden, Trans. Faraday Soc., 2188(1961).Google Scholar
  37. 37.
    F. Kaufman, in Chemiluminescence and Bioluminescence (M.J. Cormier, D.M. Hercules, J. Lee, eds.), Plenum Press, New York, pp. 83–100 (1973).Google Scholar
  38. 38.
    C.J. Halstead and B.A. Thrush, Proc. R. Soc., A295, 363, 380 (1966).Google Scholar
  39. 39.
    M.J.Y. Clement and D.A. Ramsay, Can. J. Phys., 32, 205 (1961).ADSCrossRefGoogle Scholar
  40. 40.
    D.B. Hartley and B.A. Thrush, Proc. R. Soc., A297, 520 (1967).CrossRefGoogle Scholar
  41. 41.
    M.A.A. Clyne and B.A. Thrush, Proc. R. Soc., A269, 404 (1962).CrossRefGoogle Scholar
  42. 42.
    K.E. Shuler, J. Chem. Phys., 21, 624 (1953).ADSCrossRefGoogle Scholar
  43. 43.
    R.J. Donovan and D. Husain, Chem. Rev., 22, 489 (1970).CrossRefGoogle Scholar
  44. 44.
    T.C. Clark and M.A.A. Clyne, Trans. Faraday Soc., 66, 877 (1970).CrossRefGoogle Scholar
  45. 45.
    P.N. Clough and B.A. Thrush, Trans. Faraday Soc., 63, 915 (1967).CrossRefGoogle Scholar
  46. 46.
    M. Gauthier and D.R. Snelling, Chem. Phys. Lett., 20, 178 (1973).ADSCrossRefGoogle Scholar
  47. 47.
    A.E. Redpath and M. Menzinger, J. Chem. Phys., 62, 1987 (1975).Google Scholar
  48. 48.
    R.J. Gordon and M.C. Lin, Chem. Phys. Lett., 22, 262 (1973).ADSCrossRefGoogle Scholar
  49. 49.
    W. Braun, M.J. Kurylo, A. Kaldor and R.P. Wayne, J. Chem. Phys. 61, 461 (1974).ADSCrossRefGoogle Scholar
  50. 50.
    D.R. Snelling, Can. J. Chem., 2., 257 (1974).Google Scholar
  51. 51.
    M. Polanyi, Atomic Reactions, Williams and Norgate, London (1932).Google Scholar
  52. 52.
    W.S. Struve, T. Kitagawa, and D.R. Herschbach, J. Chem. Phys., 27, 59 (1971).Google Scholar
  53. 53.
    M.C. Moulton and D.R. Herschbach, J. Chem. Phys., 44, 3010 (1966).ADSCrossRefGoogle Scholar
  54. 54.
    J.L. Magee, J. Chem. Phys., 3, 652 (1939); 8, 687 (1940).ADSCrossRefGoogle Scholar
  55. 55.
    D.R. Herschbach, Adv. Chem. Phys., 10, 319 (1966).Google Scholar
  56. 56.
    D.O. Ham, J. Chem. Phys., 60, 1802 (1974).ADSCrossRefGoogle Scholar
  57. 57.
    W.S. Struve, Molec. Phys., 25, 777 (1973).ADSCrossRefGoogle Scholar
  58. 58.
    M.F. Golde and B.A. Thrush, Chem. Phys. Letters, 22, 486 (1974).ADSCrossRefGoogle Scholar
  59. 59.
    W.S. Struve, J.R. Krenos, D.L. McFadden and D.R. Herschbach, Faraday Disc. Chem. Soc.I 314 (1973).Google Scholar
  60. 60.
    C.J. Hsu, W.D. Krugh, and H.B. Palmer, J. Chem. Phys., 60, 5118 (1974).ADSCrossRefGoogle Scholar
  61. 61.
    B.A. Thrush, J. Chem. Phys., AI, 5191 (1973).Google Scholar
  62. 62.
    R.B. Woodward and R. Hoffmann, Angewandte Chemie (Int. Ed.) 8, 781 (1969).CrossRefGoogle Scholar
  63. 63.
    D.M. Silver and R.M. Stevens, J. Chem. Phys. 33, 78 (1973).Google Scholar
  64. 64.
    D.R. Kearns, J. Am. Chem. Soc., 91, 6554 (1969).CrossRefGoogle Scholar
  65. 65.
    F. McCapra, M. Roth, D. Hysert and K.A. Zaklika, in Chemiluminescence and Bioluminescence,(M.J. Cormier, D.M. Hercules, J. Lee eds.), Plenum Press, New York, pp. 313–323 (1973).Google Scholar
  66. 66.
    R.P. Porter, A.H. Clark, W.E. Kaskan and W.E. Browne, Proc. 11th Symp. Combustion, Combustion Institute, Pittsburgh. p. 907 (1967).Google Scholar
  67. 67.
    E.M. Bulewicz, P.J. Padley and R.E. Smith, Proc. R. Soc. A315, 129 (1970).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1976

Authors and Affiliations

  • B. A. Thrush
    • 1
  1. 1.Department of Physical ChemistryUniversity of CambridgeCambridgeEngland

Personalised recommendations