Skip to main content

Molecular Excitons in Small Aggregates

  • Chapter
Spectroscopy of the Excited State

Part of the book series: NATO Advanced Study Institutes Series ((NSSB,volume 12))

Abstract

The molecular exciton model, which deals with the excited state resonance interaction in weakly coupled electronic systems, is described as an interpretative tool for the study of the spectra and photochemistry of composite molecules. Under composite molecules are grouped loosely bound groups of light-absorbing units, held together by hydrogen bonds or by van der Waals forces. Another group of composite molecules included in the study consists of covalently bound light-absorbing units.

A skeletal outline of the simplest quantum mechanical frame­work for the description of the model is presented. Dimers of various geometries, cyclical higher aggregates, linear chain poly­mers, helical polymers, and molecular lamellar arrays are reviewed. The exciton splitting diagrams and electric dipole selection rules are discussed quantum mechanically and by means of a transition dipole vector model.

Applications to absorption and luminescence spectroscopy of molecular aggregates are cited. Photochemical sensitization and photobiological applications are suggested, and areas of new research are enumerated.

Work done under a contract between the Division of Biomedical and Environmental Research, Energy Research and Development Administration, and the Florida State University.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. Frenkel, Phys. Rev. 37, 7, 1276 (1931);

    Article  ADS  MATH  Google Scholar 

  2. Physik. Z. Sowjetunion 9, 158 (1936) (in English).

    Google Scholar 

  3. R. S. Knox, Theory of Excitons (Solid State Physics Series), Academic Press, New York (1963).

    Google Scholar 

  4. M. Kasha, in Physical Processes in Radiation Biology (Augenstein, Rosenberg, and Mason, eds.), Academic Press, New York, pp. 17–22 (1964). We consider the Frenkel treatment as offering the general excitation delocalization model, including the Davydov treatment as the tightly-bound case, and the Wannier treatment as the loosely-bound case (cf. Knox).

    Google Scholar 

  5. Th. Förster, in Modern Quantum Chemistry, Vol. III (O. Sinanoglu, ed.), Academic Press, New York, pp. 93–137 (1965).

    Google Scholar 

  6. M. Kasha, Rev. Modern Phys. 31, 162 (1959).

    Article  ADS  Google Scholar 

  7. A. S. Davydov, Theory of Molecular Excitons (trans. from first Russian (1951) ed. by M. Kasha and M. Oppenheimer, Jr.), McGraw-Hill Book Co., New York (1962).

    Google Scholar 

  8. A. S. Davydov, Zhur. Eksptl. Teoret. Fiz. 18, 210 (1948).

    Google Scholar 

  9. Cf. first 12 chapters in Section III, Modern Quantum Chemistry, Vol. III (Sinanoglu, ed.), Academic Press, New York (1965).

    Google Scholar 

  10. W. T. Simpson and D. L. Peterson, J. Chem. Phys. 26, 588 (1957).

    Article  ADS  Google Scholar 

  11. Cf. M. Kasha, Radiation Research 20, 55 (1963).

    Article  Google Scholar 

  12. E. G. McRae and W. Siebrand, J. Chem. Phys. 41, 905 (1964).

    Article  ADS  Google Scholar 

  13. G. L. Levinson, W. T. Simpson and W. Curtis, J. Am. Chem. Soc. 79, 4314 (1957).

    Article  Google Scholar 

  14. E. G. McRae and M. Kasha, J. Chem. Phys. 28, 721 (1958).

    Article  ADS  Google Scholar 

  15. Cf. D. S. McClure, Canadian J. Chem. 36, 59 (1958).

    Article  Google Scholar 

  16. M. Kasha, H.R. Rawls, and M. Ashraf E1-Bayoumi, Pure and Applied Chemistry 11, 371 (1965).

    Article  Google Scholar 

  17. E. G. McRae and M. Kasha, in Physical Processes in Radiation Biology (Augenstein, Rosenberg and Mason, eds.),Academic Press, New York, pp. 23–42 (1964).

    Google Scholar 

  18. M. Kasha, M. Ashraf El-Bayoumi and W. Rhodes, J. chien. Phys. 58, 916 (1961).

    Google Scholar 

  19. V. Zanker, Z. physik Chem. 199, 225 (1952);

    Google Scholar 

  20. V. Zanker,ibid. 200, 250 (1952).

    Google Scholar 

  21. M. Kasha, in International Conference on Luminescence, Hungarian Acad. Sci., Akadémiai Kiadó,Budapest, pp. 166–182 (1968).

    Google Scholar 

  22. M. Kasha, Faraday Soc. Discussion No. 9, 14 (1950).

    Article  Google Scholar 

  23. L. Michaelis: Cold Spring Harbor Symposium on Quantitative Biology 12, 131 (1947);

    Article  Google Scholar 

  24. L. Michaelis: J. Phys. Colloid Chem. 54 1 (1950).

    Article  Google Scholar 

  25. D. F. Bradley and M. K. Wolf, Proc. Nat. Acad. Sci. U.S. 45, 944 (1959).

    Article  ADS  Google Scholar 

  26. S. S. Brody and M. Brody, Nature 189, 547 (1961);

    Article  ADS  Google Scholar 

  27. S. S. Brody and M. Brody:Trans. Faraday Soc. 58, 416 (1962).

    Article  Google Scholar 

  28. E. E. Jelley, Nature 138, 1009 (1936);

    Article  ADS  Google Scholar 

  29. E. E. Jelley:ibid. 139, 631 (1937).

    Google Scholar 

  30. Cf. S.E. Sheppard, Rev. Modern Phys. 14, 303 (1942).

    Article  ADS  Google Scholar 

  31. W. Moffitt, Proc. Nat. Acad. Sci. U.S. 42, 736 (1956);

    Article  ADS  Google Scholar 

  32. W. Moffitt, D.D. Fitts and J.G. Kirkwood, Proc. Nat. Acad. Sci. U.S. 43, 723 (1957).

    Article  ADS  Google Scholar 

  33. K. Rosenheck and P. Doty, Proc. Nat. Acad. Sci. U.S. 47, 1775 (1961).

    Article  ADS  Google Scholar 

  34. W. B. Gratzer, G. M. Holzwarth and P. Doty, Proc. Nat. Acad. Sci. U.S. 47, 1785 (1961).

    Article  ADS  Google Scholar 

  35. W. Rhodes and D. G. Barnes, J. chim. Phys. 65, 78 (1968).

    Google Scholar 

  36. L. Stryer and E. R. Blout, J. Am. Chem. Soc. 83, 1411 (1961).

    Article  Google Scholar 

  37. I. Tinoco, J. Am. Chem. Soc. 82, 4785 (1960).

    Article  Google Scholar 

  38. W. Rhodes, J. Am. Chem. Soc. 83, 3609 (1961).

    Article  Google Scholar 

  39. W. Rhodes, J. Chem. Phys. 37, 2433 (1962).

    Article  ADS  Google Scholar 

  40. R. M. Hochstrasser and M. Kasha, Photochem. Photobiol. 3, 317 (1964).

    Article  Google Scholar 

  41. K. Fajans and 0. Hassel, Z. Elektrochem. 29, 495 (1923);

    Google Scholar 

  42. K.Fajans and Wolff, Z. anorg. Chem. 137, 221 (1924).

    Article  Google Scholar 

  43. E. Clementi and M. Kasha, J. Chem. Phys. 26, 956 (1957).

    Article  ADS  Google Scholar 

  44. Kautsky, Hirsch, and Baumeister, Ber. deutsch. chem. Ges. 64, 2053 (1931);

    Article  Google Scholar 

  45. H. Kautsky and H. Merkel, Naturwissenschaften 27, 195 (1939).

    Article  ADS  Google Scholar 

  46. N. Chalazonitis, Photochem. Photobiol. 1, 539 (1964).

    Article  Google Scholar 

  47. A. Arvanitaki and N. Chalazonitis, in Nervous Inhibition, Pergamon Press, Oxford, p. 194 (1961).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1976 Plenum Press, New York

About this chapter

Cite this chapter

Kasha, M. (1976). Molecular Excitons in Small Aggregates. In: Di Bartolo, B., Pacheco, D., Goldberg, V. (eds) Spectroscopy of the Excited State. NATO Advanced Study Institutes Series, vol 12. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-2793-6_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-2793-6_12

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-2795-0

  • Online ISBN: 978-1-4684-2793-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics