Molecular Excitons in Small Aggregates

  • M. Kasha
Part of the NATO Advanced Study Institutes Series book series (NSSB, volume 12)


The molecular exciton model, which deals with the excited state resonance interaction in weakly coupled electronic systems, is described as an interpretative tool for the study of the spectra and photochemistry of composite molecules. Under composite molecules are grouped loosely bound groups of light-absorbing units, held together by hydrogen bonds or by van der Waals forces. Another group of composite molecules included in the study consists of covalently bound light-absorbing units.

A skeletal outline of the simplest quantum mechanical frame­work for the description of the model is presented. Dimers of various geometries, cyclical higher aggregates, linear chain poly­mers, helical polymers, and molecular lamellar arrays are reviewed. The exciton splitting diagrams and electric dipole selection rules are discussed quantum mechanically and by means of a transition dipole vector model.

Applications to absorption and luminescence spectroscopy of molecular aggregates are cited. Photochemical sensitization and photobiological applications are suggested, and areas of new research are enumerated.


Small Aggregate Transition Moment Molecular Aggregate Exciton Band Exciton Model 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. Frenkel, Phys. Rev. 37, 7, 1276 (1931);ADSMATHCrossRefGoogle Scholar
  2. Physik. Z. Sowjetunion 9, 158 (1936) (in English).Google Scholar
  3. 2.
    R. S. Knox, Theory of Excitons (Solid State Physics Series), Academic Press, New York (1963).Google Scholar
  4. 3.
    M. Kasha, in Physical Processes in Radiation Biology (Augenstein, Rosenberg, and Mason, eds.), Academic Press, New York, pp. 17–22 (1964). We consider the Frenkel treatment as offering the general excitation delocalization model, including the Davydov treatment as the tightly-bound case, and the Wannier treatment as the loosely-bound case (cf. Knox).Google Scholar
  5. 4.
    Th. Förster, in Modern Quantum Chemistry, Vol. III (O. Sinanoglu, ed.), Academic Press, New York, pp. 93–137 (1965).Google Scholar
  6. 5.
    M. Kasha, Rev. Modern Phys. 31, 162 (1959).ADSCrossRefGoogle Scholar
  7. 6.
    A. S. Davydov, Theory of Molecular Excitons (trans. from first Russian (1951) ed. by M. Kasha and M. Oppenheimer, Jr.), McGraw-Hill Book Co., New York (1962).Google Scholar
  8. 7.
    A. S. Davydov, Zhur. Eksptl. Teoret. Fiz. 18, 210 (1948).Google Scholar
  9. 8.
    Cf. first 12 chapters in Section III, Modern Quantum Chemistry, Vol. III (Sinanoglu, ed.), Academic Press, New York (1965).Google Scholar
  10. 9.
    W. T. Simpson and D. L. Peterson, J. Chem. Phys. 26, 588 (1957).ADSCrossRefGoogle Scholar
  11. 10.
    Cf. M. Kasha, Radiation Research 20, 55 (1963).CrossRefGoogle Scholar
  12. 11.
    E. G. McRae and W. Siebrand, J. Chem. Phys. 41, 905 (1964).ADSCrossRefGoogle Scholar
  13. 12.
    G. L. Levinson, W. T. Simpson and W. Curtis, J. Am. Chem. Soc. 79, 4314 (1957).CrossRefGoogle Scholar
  14. 13.
    E. G. McRae and M. Kasha, J. Chem. Phys. 28, 721 (1958).ADSCrossRefGoogle Scholar
  15. 14.
    Cf. D. S. McClure, Canadian J. Chem. 36, 59 (1958).CrossRefGoogle Scholar
  16. 15.
    M. Kasha, H.R. Rawls, and M. Ashraf E1-Bayoumi, Pure and Applied Chemistry 11, 371 (1965).CrossRefGoogle Scholar
  17. 16.
    E. G. McRae and M. Kasha, in Physical Processes in Radiation Biology (Augenstein, Rosenberg and Mason, eds.),Academic Press, New York, pp. 23–42 (1964).Google Scholar
  18. 17.
    M. Kasha, M. Ashraf El-Bayoumi and W. Rhodes, J. chien. Phys. 58, 916 (1961).Google Scholar
  19. 18.
    V. Zanker, Z. physik Chem. 199, 225 (1952);Google Scholar
  20. V. Zanker,ibid. 200, 250 (1952).Google Scholar
  21. 19.
    M. Kasha, in International Conference on Luminescence, Hungarian Acad. Sci., Akadémiai Kiadó,Budapest, pp. 166–182 (1968).Google Scholar
  22. 20.
    M. Kasha, Faraday Soc. Discussion No. 9, 14 (1950).CrossRefGoogle Scholar
  23. 21.
    L. Michaelis: Cold Spring Harbor Symposium on Quantitative Biology 12, 131 (1947);CrossRefGoogle Scholar
  24. L. Michaelis: J. Phys. Colloid Chem. 54 1 (1950).CrossRefGoogle Scholar
  25. 22.
    D. F. Bradley and M. K. Wolf, Proc. Nat. Acad. Sci. U.S. 45, 944 (1959).ADSCrossRefGoogle Scholar
  26. 23.
    S. S. Brody and M. Brody, Nature 189, 547 (1961);ADSCrossRefGoogle Scholar
  27. S. S. Brody and M. Brody:Trans. Faraday Soc. 58, 416 (1962).CrossRefGoogle Scholar
  28. 24.
    E. E. Jelley, Nature 138, 1009 (1936);ADSCrossRefGoogle Scholar
  29. E. E. Jelley:ibid. 139, 631 (1937).Google Scholar
  30. 25.
    Cf. S.E. Sheppard, Rev. Modern Phys. 14, 303 (1942).ADSCrossRefGoogle Scholar
  31. 26.
    W. Moffitt, Proc. Nat. Acad. Sci. U.S. 42, 736 (1956);ADSCrossRefGoogle Scholar
  32. W. Moffitt, D.D. Fitts and J.G. Kirkwood, Proc. Nat. Acad. Sci. U.S. 43, 723 (1957).ADSCrossRefGoogle Scholar
  33. 27.
    K. Rosenheck and P. Doty, Proc. Nat. Acad. Sci. U.S. 47, 1775 (1961).ADSCrossRefGoogle Scholar
  34. 28.
    W. B. Gratzer, G. M. Holzwarth and P. Doty, Proc. Nat. Acad. Sci. U.S. 47, 1785 (1961).ADSCrossRefGoogle Scholar
  35. 29.
    W. Rhodes and D. G. Barnes, J. chim. Phys. 65, 78 (1968).Google Scholar
  36. 30.
    L. Stryer and E. R. Blout, J. Am. Chem. Soc. 83, 1411 (1961).CrossRefGoogle Scholar
  37. 31.
    I. Tinoco, J. Am. Chem. Soc. 82, 4785 (1960).CrossRefGoogle Scholar
  38. 32.
    W. Rhodes, J. Am. Chem. Soc. 83, 3609 (1961).CrossRefGoogle Scholar
  39. 33.
    W. Rhodes, J. Chem. Phys. 37, 2433 (1962).ADSCrossRefGoogle Scholar
  40. 34.
    R. M. Hochstrasser and M. Kasha, Photochem. Photobiol. 3, 317 (1964).CrossRefGoogle Scholar
  41. 35.
    K. Fajans and 0. Hassel, Z. Elektrochem. 29, 495 (1923);Google Scholar
  42. K.Fajans and Wolff, Z. anorg. Chem. 137, 221 (1924).CrossRefGoogle Scholar
  43. 36.
    E. Clementi and M. Kasha, J. Chem. Phys. 26, 956 (1957).ADSCrossRefGoogle Scholar
  44. 37.
    Kautsky, Hirsch, and Baumeister, Ber. deutsch. chem. Ges. 64, 2053 (1931);CrossRefGoogle Scholar
  45. H. Kautsky and H. Merkel, Naturwissenschaften 27, 195 (1939).ADSCrossRefGoogle Scholar
  46. 38.
    N. Chalazonitis, Photochem. Photobiol. 1, 539 (1964).CrossRefGoogle Scholar
  47. 39.
    A. Arvanitaki and N. Chalazonitis, in Nervous Inhibition, Pergamon Press, Oxford, p. 194 (1961).Google Scholar

Copyright information

© Plenum Press, New York 1976

Authors and Affiliations

  • M. Kasha
    • 1
  1. 1.Department of Chemistry and Institute of Molecular BiophysicsFlorida State UniversityTallahasseeUSA

Personalised recommendations