The Study of Electronic Spectra in Crystalline Solid Solutions

  • D. S. McClure
Part of the NATO Advanced Study Institutes Series book series (NSSB, volume 12)


Crystalline solid solutions are useful for obtaining electronic spectra of large molecules because the molecular environment is uniform for all solute molecules, thus forming one condition for obtaining narrow lines. At temperatures of 2°K linewidths under 1 cm−1 are often observed. In addition, single oriented crystals give polarization information. The spectra of pyridine, pyrazine, naphthalene, benzoic acid dimer and stilbene in suitable crystalline matrices are presented and analyzed as examples of this method.


Electronic Spectrum Quartic Term Solution Spectrum Vibronic Coupling Vibrational Assignment 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J.H. Callomon, T.M. Dunn and I.M. Mills, Proc. Roy. Soc. A 259, 499 (1966).Google Scholar
  2. 2.
    S.N. Thakur and K.K. Innes, J. Mol. Spect. 52, 130 (1974).ADSCrossRefGoogle Scholar
  3. 3.
    E.V. Shpolskii, Sov. Phys. Usp. 6, 411 (1963);ADSCrossRefGoogle Scholar
  4. J.L. Richards and S.A. Rice, J. Chem. Phys. 54, 2014 (1971).ADSCrossRefGoogle Scholar
  5. 4.
    D.S. McClure, J.Chem. Phys. 22, 1668 (1954);ADSCrossRefGoogle Scholar
  6. D.S. McClure, ibid. 24, 1 (1956).Google Scholar
  7. 5.
    D.P. Craig, J.M. Hollas, M.F. Redies and S.C. Wait, Proc. Chem. Soc., 361 (1959).Google Scholar
  8. 6.
    John Wessel, Ph.D. Thesis, University of Chicago (1970).Google Scholar
  9. 7.
    C.A. Hutchison and B.W. Mangum, J. Chem. Phys. 34, 908 (1961).ADSCrossRefGoogle Scholar
  10. 8.
    R. Hochstrasser and J. Small, J. Chem. Phys. 45, 2270 (1966).ADSCrossRefGoogle Scholar
  11. 9.
    R.W. Brandon, R.E. Gerkin and C.A. Hutchison, J. Chem. Phys. 41, 3717 (1964).ADSCrossRefGoogle Scholar
  12. 10.
    D.L. Narva and D.S. McClure, Chemical Physics, to be published; also, D. Narva, Ph.D. Thesis, Princeton University (1975).Google Scholar
  13. 11.
    J. P. Brownrigg, Ph.D. Thesis, University of Chicago (1974).Google Scholar
  14. 12.
    K.K. Innes, J.D. Simmons and S.G. Tilford, J. Mol. Spect. 11, 247 (1963).ADSCrossRefGoogle Scholar
  15. 13.
    E.J. Zalewski, D.S. McClure and D.L. Narva, J. Chem. Phys. 61, 2964 (1974).ADSCrossRefGoogle Scholar
  16. 14.
    I. Suzuka, N. Mikami and M. Ito, J. Mol. Spect. 52, 21 (1974).ADSCrossRefGoogle Scholar
  17. 15.
    J. P. Jesson, H.W. Kroto and D.A. Ramsay, J. Chem. Phys. 56, 6257 (1972).ADSCrossRefGoogle Scholar
  18. 16.
    H. Sponer and H. Stuckeln, J. Chem. Phys. 14, 101 (1946).ADSCrossRefGoogle Scholar
  19. 17.
    R.H. Dyck and D.S. McClure, J. Chem. Phys. 36, 2326 (1962).ADSCrossRefGoogle Scholar
  20. 18.
    C.H. Ting, Ph.D. Thesis, University of Chicago (1965).Google Scholar
  21. 19.
    J.C. Baum, Ph.D. Thesis, Princeton University (1974).Google Scholar
  22. 20.
    C.A. Langhoff and G.W. Robinson, Chem. Phys. 6, 34 (1974)CrossRefGoogle Scholar
  23. 21.
    M. Goeppert-Mayer and A.L. Sklar, J. Chem. Phys. 6, 645 (1938).ADSCrossRefGoogle Scholar
  24. 22.
    W.F. Radle and C.A. Beck, J. Chem. Phys. 8, 507 (1940).ADSCrossRefGoogle Scholar
  25. 23.
    H. Sponer, J. Chem. Phys. 8, 705 (1940).ADSCrossRefGoogle Scholar
  26. 24.
    R. Pariser, J. Chem. Phys. 24, 250 (1956).ADSCrossRefGoogle Scholar
  27. 25.
    J.R. Platt, K. Ruedenberg, C.W. Scherr, J.S. Ham, H. Labhart and W. Lichten, Free Electron Theory of Conjugated Molecules, A Source Book, Wiley, London and New York (1964).Google Scholar
  28. 26.
    E. Clementi, J. Chem. Phys. 46, 4737 (1967).ADSCrossRefGoogle Scholar
  29. 27.
    M. Hackmeyer and J.L. Whitten, J. Chem. Phys. 54, 3739 (1971).ADSCrossRefGoogle Scholar
  30. 28.
    W.R. Wadt and W. A. Goddard, III, to be published.Google Scholar

Copyright information

© Plenum Press, New York 1976

Authors and Affiliations

  • D. S. McClure
    • 1
  1. 1.Department of ChemistryPrinceton UniversityPrincetonUSA

Personalised recommendations