Theory of Vibronic Spectra

  • William A. Wall
Part of the NATO Advanced Study Institutes Series book series (NSSB, volume 8)


Prominent sidebands often appear in the absorption and fluorescence spectra of systems consisting of a small quantity of magnetic ions in an ionic host lattice. The sidebands are called vibronic, and result from a dynamic coupling of the magnetic ion to the motion of other lattice constituents. These sidebands may reflect a frequency distribution for the perfect or perturbed lattice modes. An interpretation of the vibronic structure for the perfect lattice case, as first presented by R. A. Satten, is discussed.

A vibronic analysis requires a correlation of available information on lattice modes with optical data, and so the first portion of the discussion reviews infrared absorption, Raman scattering, and neutron scattering theory. A simple model for vibronic processes is then presented. Selection rules for vibronic transitions are formulated from group-theoretical considerations regarding the uncoupled electronic and vibrational systems. The role of critical points and their effect upon the frequency distribution of lattice modes is also taken into account. Finally, the system MgO:V2+ is treated in some detail.


Wave Vector Selection Rule Raman Scattering Lattice Mode Coherent Scattering 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. M. Lyddane, R. G. Sachs, E. Teller, Phys. Rev. 59, 673 (1941).ADSMATHCrossRefGoogle Scholar
  2. 2.
    W. Cochran and R. A. Cowley, J. Phys. Chem. Solids 23, 447 (1962)ADSCrossRefGoogle Scholar
  3. 3.
    W. Cochran, Adv. Phys. 9, 387 (1960).ADSCrossRefGoogle Scholar
  4. 4.
    S.S. Mitra, in Optical Properties of Solids, S. Nudelman and S. S. Mitra (eds.), Plenum (1969).Google Scholar
  5. 5.
    F. A. Johnson, Prog. Semiconductors 9, 179 (1965).Google Scholar
  6. 6.
    M. Lax and E. Burstein, Phys. Rev. 97, 39 (1955).ADSMATHCrossRefGoogle Scholar
  7. 7.
    E. Burstein, in Phonons and Phonon Interactions, T. A. Bak (ed), Benjamin, (1964).Google Scholar
  8. 8.
    M. Born and K. Huang, Dynamical Theory of Crystal Lattices, Clarendon Press, (1954).MATHGoogle Scholar
  9. 9.
    R. Loudon, Adv. Phys. 13, 423 (1964).ADSCrossRefGoogle Scholar
  10. 10.
    M. Born and M. Bradburn, Proc. Roy. Soc. A, 188, 161 (1947).ADSCrossRefGoogle Scholar
  11. 11.
    W. Panofsky and M. Phillips, Classical Electricity and Magnetism, Addison-Wesley, (1962), p. 358.MATHGoogle Scholar
  12. 12.
    R. Loudon, Proc. Roy. Soc. A 257, 218 (1963).ADSGoogle Scholar
  13. 13.
    L. S. Kothari and K. S. Singwi in Vol. 8, Solid State Physics, F. Seitz and D. Turnbull (eds.), Academic Press (1959).Google Scholar
  14. 14.
    L. I. Schiff, Quantum Mechanics, McGraw-Hill, (1968), p. 332.Google Scholar
  15. 15.
    W. M. Lomer and G. G. Low, in Thermal Neutron Scattering, P. A. Egelstaff (ed.), Academic Press (1965).Google Scholar
  16. 16.
    J. L. Prather, Atomic Energy Levels in Crystals, NBS Monograph 19 (1961).Google Scholar
  17. 17.
    J. S. Griffith, The Theory of Transition Metal Ions, Cambridge (1961), Chapters 8 and 9.MATHGoogle Scholar
  18. 18.
    B. DiBartolo, Optical Interactions in Solids, Wiley (1968).Google Scholar
  19. 19.
    A. A. Maradudin in Vol 18, 19 Solid State Physics, F. Seitz and D. Turnbull (eds.K Academic Press (1966).Google Scholar
  20. 20.
    R. A. Satten, J. Chem. Phys. 27, 286 (1957).ADSCrossRefGoogle Scholar
  21. 21.
    R. A. Satten, J. Chem. Phys 29, 658 (1958).ADSCrossRefGoogle Scholar
  22. 22.
    I. Richman, R. A. Satten, E. Y. Wong, J. Chem. Phys. 39, 1833 (1963).ADSCrossRefGoogle Scholar
  23. 23.
    R. A. Satten, J. Chem. Phys. 40, 1200 (1964).ADSCrossRefGoogle Scholar
  24. 24.
    A. A. Maradudin and S. H. Vosko, Rev. Mod. Phys. 40, 1 (1968).ADSCrossRefGoogle Scholar
  25. 25.
    G. F. Koster, in Vol. 5 Solid State Physics, F. Seitz and D. Turnbull (eds.) Academic Press (1957).Google Scholar
  26. 26.
    J. F. Cornwell, Group Theory and Electronic Energy Bands in Solids, North Holland (1969).Google Scholar
  27. 27.
    T. Timusk and M. Buchanan, Phys. Rev. 164, 345 (1967).ADSCrossRefGoogle Scholar
  28. 28.
    M. Buchanan and E. J. Woll, Can. J. Phys. 47, 1757 (1969).ADSCrossRefGoogle Scholar
  29. 29.
    W. E. Bron, Phys. Rev. 185, 1163 (1969).ADSCrossRefGoogle Scholar
  30. 30.
    D. Kühner and M. Wagner, Phys. Stat. Sol. 40, 617 (1970).Google Scholar
  31. 31.
    M. J. Sangster and C. W. McCombie, J. Phys. C: Sol. State Phys. 2, 1498 (1970).ADSCrossRefGoogle Scholar
  32. 32.
    N. B. Manson, Phys. Rev. B4, 2645 (1971).ADSGoogle Scholar
  33. 33.
    M. J. Sangster, Phys. Rev. B6, 254 (1972).ADSGoogle Scholar
  34. 34.
    H. G. von Häfele, Ann. Phys., Lpz., 7, 321 (1963).CrossRefGoogle Scholar
  35. 35.
    B. Piriou and F. Cabannes, Compt. Rend. 264, 630 (1967).Google Scholar
  36. 36.
    N. B. Manson, W. von der Ohe, and S. L. Chodos, Phys. Rev. B3, 1968 (1971).ADSGoogle Scholar
  37. 37.
    G. Peckham, Proc. Phys. Soc. 90, 657 (1967).ADSCrossRefGoogle Scholar
  38. 38.
    M. J. Sangster, G. Peckham, and D. H. Saunderson, J. Phys. C: Sol. St. Phys. 3, 1026 (1970).ADSCrossRefGoogle Scholar
  39. 39.
    R. K. Singh and K. S. Upadhyaya, Phys. Rev. B6, 1589 (1972).ADSGoogle Scholar
  40. 40.
    R. Loudon, Proc. Roy. Soc. 84, 379 (1964).ADSCrossRefGoogle Scholar
  41. 41.
    M. D. Sturge, Phys. Rev. 130, 639 (1963).ADSCrossRefGoogle Scholar
  42. 42.
    G. F. Imbush, W. M. Yen, A. L. Schawlow, D. E. McCumber, and M. D. Sturge, Phys. Rev. 133, A1029 (1964).ADSCrossRefGoogle Scholar
  43. 43.
    B. DiBartolo and R. Peccei, Phys. Rev. 137, A1770 (1965).ADSCrossRefGoogle Scholar
  44. 44.
    S. E. Stokowski, S. A. Johnson, and P. L. Scott, Phys. Rev. 147, 544 (1966).ADSCrossRefGoogle Scholar
  45. 45.
    G. E. Devlin, J. A. Ditzenberger, and M. D. Sturge, Bull. Am. Phys. Soc. 7, 258 (1962).Google Scholar
  46. 46.
    M. J. Weber and R. F. Schaufele, unpublished data, private communication.Google Scholar

Copyright information

© Plenum Press, New York 1975

Authors and Affiliations

  • William A. Wall
    • 1
  1. 1.US Army LWLAberdeen Proving Gnd.USA

Personalised recommendations