Advertisement

Absorption and Emission Spectra

  • D. Curie
Part of the NATO Advanced Study Institutes Series book series (NSSB, volume 8)

Abstract

A general account of electron-phonon coupling effects on emission and absorption spectra (shape of the spectra and bandwidth) is presented. The purpose of this paper is mainly to show that the theoretical results which happen to be the most important ones for comparison with experiments (for instance the Gaussian spectra in the scope of the semi-classical approximation, the Huang and Rhys model and the detailed shape of the one-phonon replica band), which are generally obtained as a result of more or less highly sophisticated calculations, can indeed be accounted for in a very straightforward way if suitable hypotheses are accepted. There is also a discussion of some experimental results: large band spectra in II-VI compounds (the case of ZnS:Mn is specially examined), edge emission in CdS and R-line emission of ruby.

Keywords

Emission Spectrum Electric Dipole Transition Phonon Line Quadratic Coupling Phonon Process 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    F. Williams, J. Chem.Phys., 19, 457 (1951).ADSCrossRefGoogle Scholar
  2. 1a.
    P.D. Johnson and F. Williams, Phys. Rev., 117, 964 (1960).ADSCrossRefGoogle Scholar
  3. 2.
    D. Curie, “Luminescence in Crystals”, Methuen (London) 1963, p.49, 54.Google Scholar
  4. 3.
    H. Payen de la Garanderie, Comptes-Rendus Académie des Sciences Paris, 260, 114 (1965).Google Scholar
  5. 4.
    “Phonons in perfect lattices and in lattices with point imperfections”, Scottish Universities Summer School 1965, Oliver and Boyd (Edinburgh), 1966, p.431.Google Scholar
  6. 5.
    J.J. Markham, “F-centers in alkali-halides”, Solid State Phys., Suppl.8, Academic Press (New York) 1966, p.378.Google Scholar
  7. 6.
    N.N. Kristofel, Optics and Spectr., 9, 324 (1960).ADSGoogle Scholar
  8. 7.
    H. Treptow, Phys.Stat.Sol. 6, 555 (1964).ADSCrossRefGoogle Scholar
  9. 8.
    D. Curie, Acta Phys. Polonica, 26, 613 (1964).Google Scholar
  10. 9.
    H. Payen de la Garanderie and D. Curie, J. Phys., 28, suppl. C 3, 124 (1967).Google Scholar
  11. 10.
    A. Halperin and H. Arbell, Phys.Rev., 113, 1216 (1959).ADSCrossRefGoogle Scholar
  12. 11.
    M.A. Dugué, Thesis, Paris 1972.Google Scholar
  13. 12.
    K. Era, S. Shionoya, Y. Washizawa, H. Ohmatsu. J. Phys.Chem. Sol., 29, 1827, 1843 (1968).ADSCrossRefGoogle Scholar
  14. 13.
    P. Jaszcyn-Kopec and S. Brandt, to be published in J. of Luminescence, 1974.Google Scholar
  15. 14.
    S. Shionoya, Y. Kobayashi and T. Koda, J. Phys.Soc. Japan, 20, 2046 (1965).ADSCrossRefGoogle Scholar
  16. 15.
    D. Langer and S. Ibuki, Phys.Rev., 138, A 809 (1965).ADSCrossRefGoogle Scholar
  17. 16.
    M. Zigone, R. Beserman and B. Lambert, to be published in J. of Luminescence, 1974.Google Scholar
  18. 17.
    R. Beserman, M.A. Nusimovici, and M. Balkanski, Phys.Stat.Sol., 34, 309 (1969).ADSCrossRefGoogle Scholar
  19. 18.
    D.F. Nelson and M.D. Sturge, Phys.Rev., 137, 1117 (1965).ADSCrossRefGoogle Scholar
  20. 19.
    S. Sugano, A.L. Schawlow and F. Varsanyi, Phys.Rev., 120, 2045 (1960).ADSCrossRefGoogle Scholar
  21. 20.
    J.J. Hopfield, J. Phys.Chem.Solids, 10, 110 (1959).ADSCrossRefGoogle Scholar
  22. 21.
    E. Gutsche and O. Goede, J. of Luminescence, 1–2, 200 (1970).ADSCrossRefGoogle Scholar
  23. 22.
    R. Beserman, G. Curie and D. Curie, J. of Luminescence, 8, 326 (1974).ADSCrossRefGoogle Scholar
  24. 23.
    L.E. Erickson, J.of Luminescence, 5, 1 (1972).ADSCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1975

Authors and Affiliations

  • D. Curie
    • 1
  1. 1.Luminescence LaboratoryUniversity of ParisFrance

Personalised recommendations