Advertisement

The Role of the Jahn-Teller Effect in the Optical Spectra of Ions in Solids

  • Thomas L. Estle
Part of the NATO Advanced Study Institutes Series book series (NSSB, volume 8)

Abstract

The Jahn-Teller theorem is stated and then illustrated by a simple two-dimensional model. The model is used to show the Coulomb origin of the effect and to discuss the static and dynamic Jahn-Teller effects. This is followed by a fuller discussion of the Hamiltonian describing a magnetic ion in a crystal and a presentation of the multidimensional configuration coordinate diagrams for actual systems of interest. These diagrams are then used to discuss the broad-band optical spectra which can occur. The vibronic level structure for electronically degenerate states is then discussed employing correlation diagrams and evidence of this structure is cited from selected optical spectra.

Keywords

Correlation Diagram Vibronic Coupling Vibronic Structure Tunneling Splitting Orbital Degeneracy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. D. Sturge, in Solid State Physics, ed. by F. Seitz, D. Turnbull, and H. Ehrenreich (Academic Press, New York), Vol. 20, p. 91, 1967.Google Scholar
  2. 2.
    F. S. Ham, in Electron Paramagnetic Resonance, ed. by. S. Geschwind (Plenum Press, New York), p. 1, 1972.Google Scholar
  3. 3.
    R. Englman, The Jahn-Teller Effect in Molecules and Crystals (Wiley, New York), 1972.Google Scholar
  4. 4.
    H. A. Jahn and E. Teller, Proc. Roy. Soc. (London), A 161, 220 (1937).ADSCrossRefGoogle Scholar
  5. 5.
    H. A. Jahn, Proc. Roy. Soc. (London) A 164, 117 (1938).ADSCrossRefGoogle Scholar
  6. 6.
    B. Nygren, J. T. Vallin, and G. A. Slack, Solid State Communications 11, 35 (1972).ADSCrossRefGoogle Scholar
  7. 7.
    A. A. Kaplyanskii and A. K. Przevuskii, Opt. i. Spektroskopiya 19, 597 (1965)Google Scholar
  8. 7.
    A. A. Kaplyanskii and A. K. Przevuskii, [Opt. Spectry. (USSR) 19, 331 (1965)].ADSGoogle Scholar
  9. 8.
    L. L. Chase, Phys. Rev. Letters 23, 275 (1969);ADSCrossRefGoogle Scholar
  10. 8.
    L. L. Chase, L. L. Chase Phys. Rev. B2, 2308 (1970).ADSGoogle Scholar
  11. 9.
    S. Guha and L. L. Chase, Phys. Rev. Letters 32, 869 (1974).ADSCrossRefGoogle Scholar
  12. 10.
    M.C.M. O’Brien, Proc. Roy. Soc. (London) A281, 323 (1964).ADSGoogle Scholar
  13. 11.
    M. D. Sturge, Phys. Rev. B1, 1005 (1970).ADSGoogle Scholar
  14. 12.
    M. Y. Chen, D. S. McClure, and E. I. Solomon, Phys. Rev. B6, 1690 (1972).ADSGoogle Scholar
  15. 13.
    U. Kaufmann, P. Koidl, and O. F. Schirmer, J. Phys. C6, 310 (1973).ADSGoogle Scholar
  16. 14.
    F. S. Ham and G. A. Slack, Phys. Rev. B4, 777 (1971).ADSGoogle Scholar
  17. 15.
    G. A. Slack, F. S. Ham, and R. M. Chrenko, Phys. Rev. 152, 376 (1960).ADSCrossRefGoogle Scholar
  18. 16.
    G. A. Slack and B. M. O’Meara, Phys. Rev. 163, 335 (1967).ADSCrossRefGoogle Scholar
  19. 17.
    S. Wittekoek, R. P. van Stapele, and A.W.J. Wijma, Phys. Rev. B7, 1667 (1973).ADSGoogle Scholar
  20. 18.
    P. Koidl, O. F. Schirmer, and U. Kaufmann, Phys. Rev. B8, 4926 (1973).ADSGoogle Scholar
  21. 19.
    T. Ray and J. R. Regnard, Phys. Rev. B9, 2110 (1974).ADSGoogle Scholar

Copyright information

© Plenum Press, New York 1975

Authors and Affiliations

  • Thomas L. Estle
    • 1
  1. 1.Department of PhysicsRice UniversityHoustonUSA

Personalised recommendations