Relaxation and Energy Transfer

  • R. Orbach
Part of the NATO Advanced Study Institutes Series book series (NSSB, volume 8)


The theory of phonon induced spin-lattice relaxation of paramagnetic impurities in solids is reviewed and summarized, The frequency and temperature dependences of non-radiative relaxation transitions are catalogued. The electron-phonon interaction is applied to spatial energy transfer, and some interesting aspects of the range dependence examined. Short range transfer forces (e.g., exchange) are discussed, and critical concentrations for energy transport in inhomogeneously broadened systems derived. The relationship between this effect and degradation of fluorescent efficiency is discussed.


Matrix Element Energy Transfer Phonon Energy Range Dependence Homogeneous Width 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    T. Förster, Ann. Physik 2, 55 (1948).MATHCrossRefGoogle Scholar
  2. 2.
    D.L. Dexter, J. Chem. Phys. 21, 836 (1953);ADSCrossRefGoogle Scholar
  3. 2a.
    D.L. Dexter, J. Phys. Rev. 126, 1962 (1962).ADSCrossRefGoogle Scholar
  4. 3.
    R. Orbach, in “Optical Properties of Ions in Crystals”, Ed. by H.M. Crosswhite and H.W. Moos (Interscience, New York, 1967), p. 445.Google Scholar
  5. 4.
    R.J. Birgeneau, J. Chem. Phys. 50, 4282 (1969).ADSCrossRefGoogle Scholar
  6. 5.
    T. Miyakawa and D.L. Dexter, Phys. Rev. B1, 2961 (1970).ADSGoogle Scholar
  7. 6.
    T.F. Soules and C.B. Duke, Phys. Rev. B3, 262 (1971).ADSGoogle Scholar
  8. 7.
    M. Kohli and N.L. Huang Liu, Phys. Rev. B9, 1008 (1974).ADSGoogle Scholar
  9. 8.
    P.W. Anderson, Phys. Rev. 109, 1492 (1958).ADSCrossRefGoogle Scholar
  10. 9.
    S.K. Lyo, Phys. Rev. B3, 3331 (1971).ADSGoogle Scholar
  11. 10.
    L.A. Riseberg, W.A. Gandrud, and H.W. Moos, Phys. Rev. 159, 262 (1967);ADSCrossRefGoogle Scholar
  12. 10a.
    L.A. Riseberg and H.W. Moos, ibid, 174, 429 (1968).ADSCrossRefGoogle Scholar
  13. 11.
    R. Reisfeld and Y. Eckstein, J. Non-crystalline Solids 11, 261 (1972).ADSCrossRefGoogle Scholar
  14. 12.
    “Electron Spin-Lattice Relaxation” by R. Orbach and H.J. Stapleton, “Electron Paramagnetic Resonance”, ed. by S. Geschwind (Plenum Press, New York, 1972), page 121.Google Scholar
  15. 13.
    E. Simanek and Z. Sroubek, Phys. Status Solidi 4, 251 (1964);CrossRefGoogle Scholar
  16. 13a.
    R.E. Watson and A.J. Freeman, Phys. Rev. 134, A1526 (1964);ADSCrossRefGoogle Scholar
  17. 13b.
    R.E. Watson and A.J. Freeman Phys. Rev. 156, 251 (1967).ADSCrossRefGoogle Scholar
  18. 14.
    A.R. Edmonds, “Angular Momentum in Quantum Mechanics” (Princeton University Press, Princeton, 1957);MATHGoogle Scholar
  19. 14a.
    J.S. Griffith, “The Theory of Transition Metal Ions” (Cambridge University Press, Cambridge, 1961).MATHGoogle Scholar
  20. 15.
    J.H. Van Vleck, J. Chem. Phys. 7, 72 (1939);ADSCrossRefGoogle Scholar
  21. 15a.
    J.H. Van Vleck, Phys. Rev. 57, 426 (1940).ADSCrossRefGoogle Scholar
  22. 16.
    R. Orbach, Proc. Roy. Soc. A264, 458 (1961);ADSGoogle Scholar
  23. 16a.
    P.L. Scott and C.D. Jeffries, Phys. Rev. 127, 32 (1962).ADSCrossRefGoogle Scholar
  24. 17.
    R. Orbach and M. Tachiki, Phys. Rev. 158, 524 (1967).ADSCrossRefGoogle Scholar
  25. 18.
    M. Blume and R. Orbach, Phys. Rev. 127, 1587 (1962).ADSCrossRefGoogle Scholar
  26. 19.
    R.R. Sarma, T.P. Das, and R. Orbach, Phys. Rev. 149, 257 (1966);ADSCrossRefGoogle Scholar
  27. 19a.
    R.R. Sarma, T.P. Das, and R. Orbach, ibid, 155, 338 (1967);ADSCrossRefGoogle Scholar
  28. 19b.
    R.R. Sarma, T.P. Das, and R. Orbach, ibid, 171, 378 (1968).ADSCrossRefGoogle Scholar
  29. 20.
    G. Watkins and E. Feher, Bull. Am. Phys. Soc. 7, 29 (1962);Google Scholar
  30. 20a.
    G. Watkins and E. Feher, Elsa Rosenwasser Feher, Phys. Rev. 136, A145 (1964).Google Scholar
  31. 21.
    E.S. Sabisky and C.H. Anderson, Phys. Rev. B1, 2028 (1970).ADSGoogle Scholar
  32. 22.
    A. Abragam, J.F. Jacquinot, M. Chapellier, and M. Goldman, J. Phys. C. (London) 5, 2629 (1972).ADSGoogle Scholar
  33. 23.
    M. Wagner, J. Chem. Phys. 41, 3939 (1964).ADSCrossRefGoogle Scholar
  34. 24.
    H. Rosenberg and J.K. Wigmore, Phys. Letters 24A, 317 (1967).ADSGoogle Scholar
  35. 25.
    M. Blume, R. Orbach, A. Kiel, and S. Geschwind, Phys. Rev. 139, A314 (1965).ADSCrossRefGoogle Scholar
  36. 26.
    A.L. Shawlow, in “Advances in Quantum Electronics”, ed. by J.R. Singer (Columbia University Press, New York, 1961), p. 50; M.D. Sturge, quoted in ref. (27).Google Scholar
  37. 27.
    G.F. Imbusch, S.R. Chinn, and S. Geschwind, Phys. Rev. 161, 295 (1967).ADSCrossRefGoogle Scholar
  38. 28.
    Actually, what is quoted in (27) is the spin flip non-radiative rate from the 2A to the E level. We have used the theoretical ratio, (1/60), given in (25) for this rate to the non-spin-flip non-radiative rate, to obtain these values. Work on photon echoes by I.D. Abelia, N.A. Kurnit, and S.R. Hartmann, Phys. Rev. 141, 391 (1966) suggest these times may be too short. That is, the factor of 1/60 is too large, and the actual non-spin-flip non-radiative rate is around an order of magnitude slower than given in eq. (19).ADSCrossRefGoogle Scholar
  39. 29.
    R. Orbach, Phys. Rev. 135, A34 (1964).CrossRefGoogle Scholar
  40. 30.
    P.P. Sorokin and M.J. Stevenson, IBM, J. Res. Development 5, 56 (1961);CrossRefGoogle Scholar
  41. 30a.
    see also W. Kaiser, C.G.B. Garrett, and D.L. Wood, Phys. Rev. 123, 766 (1961);ADSCrossRefGoogle Scholar
  42. 30b.
    and P.P. Sorokin, M.J. Stevenson, J.R. Lankard, and G.D. Petit, Phys. Rev. 127, 503 (1962) for a study of SrF2 :Sm2+.ADSCrossRefGoogle Scholar
  43. 31.
    K.R. German and A. Kiel, Phys. Rev. B8, 1846 (1973).ADSGoogle Scholar
  44. 32.
    R. Orbach, Proc. Roy. Soc. A264, 458 (1961).ADSGoogle Scholar
  45. 33.
    R. Kislink and C.A. Moore, Phys. Rev. 160, 307 (1967).ADSCrossRefGoogle Scholar
  46. 34.
    A. Kiel, “Quantum Electronics”, ed. by P. Grivet and N. Bloembergen (Columbia University Press, New York, 1964), Vol. 1, page 765.Google Scholar
  47. 35.
    G.F. Imbusch, Phys. Rev. 153, 326 (1967).ADSCrossRefGoogle Scholar
  48. 36.
    P.W. Anderson, Phys. Rev. 109, 1492 (1958).ADSCrossRefGoogle Scholar
  49. 36a.
    See also an “improved treatment” which curiously leads to the same conclusions: R. Abou-Chaira, P.W. Anderson, and D.J. Thouless, J. Phys. C. 6, 1734 (1973).ADSCrossRefGoogle Scholar
  50. 37.
    N.F. Mott, Phil. Mag. 19, 835 (1969).ADSCrossRefGoogle Scholar
  51. 38.
    J.M. Ziman, J. Phys. C. 2, 1230 (1969).ADSCrossRefGoogle Scholar
  52. 39.
    B.C. Carlson and G.S. Rushbrooke, Proc. Cambridge Phil. Soc. 46, 626 (1950).MathSciNetADSMATHCrossRefGoogle Scholar
  53. 40.
    P. Kislink, N.C. Chang, P.L. Scott, and M.H.L. Pryce, Phys. Rev. 184, 367 (1969).ADSCrossRefGoogle Scholar
  54. 41.
    J.P. van der Ziel, Phys. Rev. B9, 2846 (1974).ADSGoogle Scholar
  55. 42.
    W. Heitler, “The Quantum Theory of Radiation”, (Oxford University Press, New York, 1957), page 231.Google Scholar
  56. 43.
    K. Sugihara, J. Phys. Soc. (Japan) 14, 1231 (1959).ADSCrossRefGoogle Scholar
  57. 44.
    L.K. Aminov and B.I. Kochelaev, J. Exptl. Theor. Phys. (U.S. S.R.) 43, 1303 (1962)[Engl transi: Soviet Phys. J.E.T.P., 15, 903 (1962)];Google Scholar
  58. 44a.
    D.H. McMahon and R.H. Silobee, Phys. Rev. 135, A91 (1964). See also many references to Birgeneau’s work in ref. (4).ADSCrossRefGoogle Scholar
  59. 45.
    M. Inokuti and F. Ilirayama, J. Chem. Phys. 43, 1978 (1965).ADSCrossRefGoogle Scholar
  60. 45a.
    Confirmatory experiments were made by E. Nakazawa and S. Shionoya, J. Chem. Phys. 47, 3211 (1967).ADSCrossRefGoogle Scholar
  61. 46.
    W. B. Gandrud and H. W. Moos, J. Chem. Phys. 49, 2170 (1968).ADSCrossRefGoogle Scholar
  62. 47.
    M. J. Weber, Phys. Rev. B4, 2933 (1971).ADSGoogle Scholar
  63. 48.
    N. A. Tolstoi and Liu Shun’-Fu, Opt. i Spectroskopiya 13, 403 (1962) [Opt. Spectry. (USSR) 13, 224 (1962)]. More recent experiments “by Imbusch on finely powdered ruby also indicate this behavior.Google Scholar
  64. 49.
    G. F. Imbusch, private communication .Google Scholar
  65. 50.
    N. Krasutsky and H. W. Moos, Phys. Rev. B8, 1010 (1973).ADSGoogle Scholar

Copyright information

© Plenum Press, New York 1975

Authors and Affiliations

  • R. Orbach
    • 1
  1. 1.Department of PhysicsTel-Aviv UniversityRamat Aviv, Tel-AvivIsrael

Personalised recommendations